THE NEOTIA UNIVERSITY

THE NEOTIA UNIVERSITY

Computer Science & Engineering
Computer Organization Lab Manual

2" year, Semester — I

Computer OrganizationPage 1

THE NEOTIA UNIVERSITY

1.Dos and Don’ts in Laboratory :-

1. Do not handle any equipment before reading the instructions /Instruction
manuals.

2. Read carefully the power ratings of the equipment before it is switched ON,
whether ratings 230 V/50 Hz or 115V/60 Hz. For Indian equipment, the power
ratings are normally 230V/50Hz. If you have equipment with 115/60 Hz ratings,
do not insert power plug, as our normal supply is 230V/50Hz., which will
damage the equipment.

3. Observe type of sockets of equipment power te avoid mechanical damage.

4. Do not forcefully place connectors to avoid the damage.

5. Strictly observe the instructions given by the Teacher/ Lab Instructor.

Instruction for Laboratory Teachers:-

1. Submission related to whatever lab work has been completed should be done
during the next lab session.

2. Students should be instructed to switch on the power supply after getting the
checked by the lab assistant / teacher. After the experiment is over, the
students must hand over the circuit board, wires, CRO probe to the lab
assistant/teacher.

3. The promptness of submission should be encouraged by way of marking and
evaluation patterns that will benefit the sincere students.

Computer OrganizationPage 2

THE NEOTIA UNIVERSITY

2.Lab Exercises

Write assembly language program to perform 8 bit and 16 bit addition.
Write assembly language program to perform 8 bit and 16 bit subtraction.
Write assembly language program to perform 8 bit and 16 bit multiplication.
Write assembly language program to perform 8 bit and 16 bit division.
Write assembly language program to perform 8 bit and 16 bit AND ing.
Write assembly language program to perform 8 bit and 16 bit OR ing.

Write assembly language program to perform 8 bit and 16 bit XOR ing.

s A B - A L

Write assembly language program to check whether entered number is
even or odd

9. Write assembly language program to perform conversion from ASCI|
number to packed BCD.

10. Write assembly language program to calculate of temperature.

11. Study of BIOS and DOS
interrupts. 12.5tudy of TSR.

Computer OrganizationPage 3

THE NEOTIA UNIVERSITY

Experiment No.1
Addition

Aim:- Write assembly language program to perform 8 bit and 16 bit addition

Objective: To add 8 bit and 16 bit binary numbers using addition rules for hinary arithmetic
instruction.

Software: 8086 Emulator

Theory: The 8086 has four groups of the user accessible intérnal registers. They are
1. general purpose registers

2. Segment registers
3. pointer and index registers
4.

Flag register

General Purpose Registers
AX : Accumulator register consists of two 8-bit registers AL and AH, which can be
comhbined together and used as a 16- bit register AX. AL in this case contains the
low-order byte of the word, and AH contains the high-order byte. Accumulator can be
used for I/O operations and string manipulation.
BX: Base register consists of two 8-bit registers BL and BH, which can be combined

together and used as a 16-bit register BX. BL in this case contains the low-order hyte of
the word, and BH contains the high-order byte. BX register usually contains a data
pointer used for based, based indexed or register indirect addressing.

CX: Count register consists of two 8-bit registers CL and CH, which can be combined

together and used as a 16-bit register CX. When combined, CL register contains the low-
order byte of the word, and CH contains the highorder byte. Count register can be used
in Loop, shift/rotate instructions and as a counter in string manipulation,.

DX: Data register consists of two 8-bit registers DL and DH, which can be combined

together and used as a 16-hit register DX. When combined, DL register contains the low-
order byte of the word, and DH contains the highorder byte. Data register can be used as
a port number in I/0 operations. In integer 32-bit multiply and divide instruction the DX
register contains high-order word of the initial or resulting number,

Segment register:

Code segment {CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions
referenced by instruction pointer (IP) register. CS register cannot be changed directly.

I
Computer OrganizationPage 4

THE NEOTIA UNIVERSITY

The CS register is automatically updated during far jump, far call and far return
instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program

stack. By default, the processor assumes that all data referenced by the stack pointer
(SP) and base pointer (BP) registers is located in the stack segment. SS register can be
changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program

data. By default, the processor assumes that all data referenced by general registers (AX,

Computer OrganizationPage 5

THE NEOTIA UNIVERSITY

BX, CX, DX) and index register (5, DI] i= lecated in the data =egment. 05 register can he
changed directly using POP and LDS instructions.

Extra segment (ES5) is a 16-bit register containing address of 64KB segment, usually with

program data. By default, the processor assumes that the Dl register references the ES
segment in string manipulation instructions, ES register can be changed directly using
POP and LES instructions

Pointer and Index Registers

® |Instruction Pointer (IP) is & 16-bit register that contains the offset address, [P is
combined with the C5te penerate the address of the next instructicn to be executed.
» Stack Pointer |5P)is a 16-bit register pointing to program =tack.

e Base Pointer (BP] is a 16-bit register peinting to data in stack segment. BP register is
usually used for based, based indexed or regi=ter indirect addressing.

* 5Source Index (51] i= a 16-bit register. 51 i= used for indexed, based indexed and register
indirect addressing, as well asa sournce data address in string manipulation instructions.

o Destination Index (DI] is a 16-bit register. DI is used for indexed, based indexed and
register indirect addressing, as well as a destination data address in string manipulaticn
instructions.

Flag Register

15:14:°13-32 11369 B BV o SRSEey 3 -2 1 B
GO @ d G
| . I— Carrg Mag
| | Parsy Flag

| Zero Flag

Sign Flag

Tragp Flag

| Imterrupt Enabile Flag
Pl dzectinm Flag

Dypeglow Flag

Aialiary Flag

Flags i= 3 16-hit register containing nine 1-bit flags. D6 flags are status flags and 2 are Control
Flags
. Owerflow Flag |OF) - et if the rezult is too large positive number, or is
too small negative number te fit inte destination operand.
® Direction Flag |DF} - if set then string manipulation instructions will
auto-decrement index registers, |f cleared then the index registers will be
aute-incremented.
. Interrupt-enable Flag |IF} - setting this kit enakles maskable interrupts.

. Single-step Flag [TF} - if set then =ingle-step intermrupt will occur after
the next instruction.
. 5ign Flag |5F) - setif the mo=t significant kit of the result is set,

. Zero Flag | ZF}) - =et if the result iszerma.

T
Computer OrpanizationFape 6

THE NEOTIA UNIVERSITY

& Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in

the AL register.
) Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the

result is even.
° Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit during la

result calculation.

e
Computer OrganizationPage 7

THE NEOTIA UNIVERSITY

Data Transfer Instructions

Data transfer is one of the most common tasks when programming in an assembly
language. Data can be transferred between registers or between registers and the memory.
Immediate data can be loaded to registers or to the memory. The transfer can be done on an
octet or word. The two operands must have the same size. Data transfer instructions don’t

affect the condition indicators {excepting the ones that have this purpose). They are classified as
follows:

6. classical transfer instructions

7. address transfer instructions
8. condition indicator transfer instructions
9. inputfoutput instructions {peripheral register transfers)

One of the Classical transfer instructions Include the following instruction:

MOY <d>, <s>

The MOV instruction is used to transfer a byte or a word of data from a source
operand to a destination operand. These operands can be internal registers of the
28086 and storage locations in memory.

Mnemenic Meaning Format Operation Fags affected
MOV Move MOV D,S (S} — (D) None
Destination Source Example

Accumulator Memory MOV AX, TEMP

Register Register MOV AX, BX

Memory Register MOV COUNT [DI], CX
Register Immediate MQV CL, 04

Arithmetic Instructions : Addition
ADD — ADD Destination, Source

ADC — ADC Destination, Source

These instructions add a number from some source to a number in some destination and put
the result in the specified destination. The ADC also adds the status of the carry flag to the
result. The source may be an immediate number, a register, or a memory location. The
destination may be a register or a memory location. The source and the destination in an
instruction cannot both be memory locations. The source and the destination must be of the
same type (bytes or words). If you want to add a byte to a word, you must copy the byte to a

Computer OrganizationPage 8

THE NEOTIA UNIVERSITY

word location and fill the upper byte of the word with 0's before adding. Flags affected: AF,
CF. OF, SF, ZF.
ADD AL, 74H ; Add immediate number 74H to content of AL. Result in AL

Computer OrganizationPage 9

THE NEOTIA UNIVERSITY

ADCCL, BL
ADD DX, BX ; Add content of BX to content of DX
ADD DX, [SI] ;Add word from memory at offset [Sl] in DS to content of DX

Program:- /* 8 BIT ADDITION */
MOV AX,0000H

MOV DS,AX

MOV

AX,[1030H] ADD

AL,[1032H] MOV

[1034H],AX INT

QObservations:-

;Add content of BL plus carry status to content of CL(CL = CL+BL+Carry Flag)

[F' Random Access Memery

| 6100: 0608 update (% table " list

0100:0000 B8 00 20 8E D8 Al 30 10-02 @6 32 1@ A3 34 10 CD
0100:2010 0 90 90 90 90 92 90 92-99 90 9@ 9@ 90 90 90 90
0100:0020 92 90 92 90 90 F4 00 QP-00 00 00 20 0Q 00 00 00
0100:0030 5 00 05 00 QA 00 00 00-00 00 00 20 0Q 20 00 00
0100:0040 00 20 20 00 00 00 @0 @P-00 00 00 00 0Y 00 00 00
0100:0050 00 20 20 00 00 @Y 0D BB-00 00 00 22 00 00 00 00
0100:0060 00 00 00 00 00 00 @@ 0P-00 00 00 20 00 00 00 00
AMAn-DAT 00 DA AR DA AR 0 R N-DA A0 00 R AN A A R

3..A+i000e2) 4P =
EEEEEEEEEEEEEEE

Rules for Addition (8 bit and 16 bit addition)

Ali/p) | B(i/p) | Y(o/p)
0 0 0

Carry(o/p)

0
1
1

= o=
= =Y 1=

Result: -
[1030H]=05
[1032H]=05
[1034H]=0A.

Program:- /* 16 BIT ADDITION */

MOV AX,0000H

Computer OrganizationPage 10

THE NEOTIA UNIVERSITY

MOV DS,AX
MOV AX,[1030H]
MOV BX,[1032H]

Computer OrganizationPage 11

THE NEOTIA UNIVERSITY

ADD AX,BX
MOV [1034H],AX
INT

Observations:-

8 emulator: 16 BIT ADD.bin_ — O %

file math debug view esternal virtualdevices virtual drive help

m’:|a|al > »

Load reload step back single step “run,_,i step delay ms: 0

Tt : | 9180:8011 | . 9108:006E

T
§_|r

]
T
=4l

B RILE X
e
HE

7

%

m v w0
T D w
m o
M| =
M| &
m| e

g1

©n

P Dl i
¢+ OOO00000
- U0DUUUDUU

o
w)

1198 sueenlmcel lewtl aw-:l varsldebug| stack| llags‘
F Random Access Memory = o b)
| 0100: 80800 update I (& table " st

0100: 0000 BS 00 00 8E D8 Al 30 10-8B 1E 32 10 03 C3 A3 34 F..A%i0riaZre e
Pie0:8010 10 CD BB 90 S0 90 90 S0-90 90 90 90 90 90 90 90 b=.EEEEEEEEEEEE
0100: 0020 90 90 90 90 90 90 90 F4-00 00 00 00 0P B0 PO B0 EEEEEEE
P1P00:P030 10 00 20 21 30 21 0D PP-00 0O 20 PO B0 P PO OO | TN I |
0100:2040 00 00 OGP 0 B0 00 0P QP-00 00 00 00 00 B0 PR B0 conenra
0100: BEsSH %%@O@@%%@B@@-@QG@%%BB%D@%
01P0: 0060 6O PP 0D 0D 00 DO PO-00 00 00 DD 0D 90 BP B ceneuvna
AMAA-AAT7TA A 0 AR R A0 R R PR-00 O A AR O A A A
Result: -

[1030H]=1000
[1032H]=2021
[1034H]=3021

Conclusion:

Computer OrganizationPage 12

THE NEOTIA UNIVERSITY

The internal registers along with FLAG register is understood and 8-bit and 16-bit addition is
implemented.

Computer OrganizationPage 13

THE NEOTIA UNIVERSITY

Experiment No.2
Subtraction
Aim:- Write assembly language program to perform 8 bit and 16 bit subtraction

Objective: To subtract & bit and 16 bit binary numbers using subtraction rules for hinary
arithmetic instruction.

Software: 8086 Emulator

Theory: 8086 ADDRESSING MODES

Immediate addressing mode:

In this mode, 8 or 16 hit data can be specified as part of the instruction. OP Code Immediate
Operand

Example 1: MOV CL, 03 H

Moves the 8 hit data 03 H into CL

Example 2 : MOV DX, 0525 H
Moves the 16 hit data 0525 H into DX

In the above two examples, the source operand is in immediate mode and the destination
operand is in register mode. A constant such as “VALUE” can be defined by the assembler
EQUATE directive such as VALUE EQU 35H

Example : MOV BH, VALUE

Used to load 35 H into BH

Register addressing mode :

The operand to be accessed is specified as residing in an internal register of 8086.Internal
registers can be used as a source or destination operand, however only the data registers can
be accessed as either a byte or word.

Example 1 : MOV DX (Destination Register) , CX (Source Register)
Which moves 16 bit content of CS into DX.

Example 2 : MOV CL, DL
Moves 8 bit contents of DL into CL

MOV BX, CH is an illegal instruction.

e The register sizes must be the same.

Computer OrganizationPage 14

THE NEOTIA UNIVERSITY

Direct addressing mode :

The instruction Opcode is followed by an affective address, this effective address is directly
used as the 16 bit offset of the storage location of the operand from the location specified by
the current value in the selected segment register. The default segment is always DS.

Computer OrganizationPage 15

THE NEOTIA UNIVERSITY

The 20 bit physical address of the operand in memory is normally obtained as PA =

D5: EA
But by using a segment override prefix (SOP) in the instruction, any of the four segment
registers can be referenced,

PA = €S .

< DS %z 1' Direct Address }
5SS)
ES

In the direct addressing mode, the 16 bit effective address (EA) is taken directly from the
displacerment field of the instruction.

Example 1 : MOV CX, START

If the 16 bit value assigned to the offset START by the programmer using an

assembler pseudo instruction such as DW is 0040 and [D5] = 3050.

Then BIU generates the 20 bit physical address 30540 H.

The content of 30540 is moved to CL

The content of 30541 is moved to CH

Example 2 : MOV CH, START
If [DS] = 3050 and START = 0040
8 bit content of memory location 30540 is moved to CH.

Example 3 : MOV START, BX

with [D5] = 3050, the value of START is 0040,

Physical address : 30540

MOV instruction mowves (BL} and {BH) to locations 30540 and 30541
respectively,

Register indirect addressing mode ;

The EA is specified in either pointer {BX) register or an index (5| or DI} register. The 20 bit
physical address is computed using DS and EA.

Example : MOV [DI], BX

register indirect
If [DS] = 5004, [D1] = 0020, [Bx] = 2456 PA=50060.
The content of BX(2456) is moved to memory locations 50060 H and 50061 H.

[cs W 1
PA= | DS | [BX

| 88 [=] SI ¢

| ES | DI

A i J

Computer OrganizationPage 16

THE NEOTIA UNIVERSITY

Based Addressing Mode:
[CS 5
PA= ; DS BX
S8 : or / *displacement
| ES BP

when memory is accessed PA is computed from BX and DS when the stack is
accessed PA is computed from BP and S5.

Example : MOV AL, START [BX]

or

MOV AL, [START + BX]

based mode

EA : [START] + [BX]

PA : [DS] + [EA]

The § hit content of this memory location is moved to AL

Indexed addressing mode:

[€S ‘ & o
PA = J DS 51
S8 f : 4 or ¢+ 8 or 16bit displacement
L ES | [DI |
Example : MOV BH, START [SI]
PA : [START] + [SI] + [DS]
The content of this memory is moved intoc BH.
Based Indexed addressing mode:
((-‘S] r = -
PA= DS | BX B
e [e T = W or 7 -+ 8or 16bit displacement
L ES") LB | | DI |

Example : MOV ALPHA [SI] [BX], CL

If [BX] = 0200, ALPHA — 08, [SI] = 1000 H and [DS] = 3000
Physical address {PA} = 31208
8 bit content of CL is moved to 31208 memory address.

Instructions:

SUB - SUB Destination, Source
SBB — 5BB Destination, Source

Computer OrganizationPage 17

THE NEOTIA UNIVERSITY

These instructions subtract the number in some source from the number in some destination
and put the result in the destination. The SBB instruction also subtracts the content of carry flag
from the destination. The source may be an immediate number, a register or memory location.
The destination can also be a register or a memory location. However, the source and the
destination cannot both be memory location. The source and the destination must both be of
the same type (bytes or words). If you want to subtract a byte from a word, you must first move

Computer OrganizationPage 18

THE NEOTIA UNIVERSITY

the byte to a word location such as a 16-bit register and fill the upper byte of the word with 0’s.
Flags affected: AF, CF, OF, PF, SF, ZF
SUB CX, BX CX — BX; Result in CX
SBB CH, AL Subtract content of AL and content of CF from content of CH. From BX

SUB PRICES [BX], 04H Subtract 04 from byte at effective address PRICES [BX],

if PRICES is declared with DB; Subtract 04 from word at effective address PRICES [BX], ifitis
declared with DW.

SBB CX, TABLE [BX] Subtract word from effective address TABLE [BX]

and status of CF from CX.
SBB TABLE [BX], CX Subtract CX and status of CF from word in memory at

effective address TABLE[BX].

Resultin CH
B SUB AX, 3427H Subtract immediate number 3427H from AX
M SBB BX, [3427H] Subtract word at displacement 3427H in DS and content of CF

Decrement Instruction
DEC = DEC Destination

This instruction subtracts 1 from the destination word or byte. The destination can be a register
or a memory location. AF, OF, SE. PF, and ZF are updated, but CF is not affected. This means
that if an 8-bit destination containing OOH or a 16-bit destination containing OO00H is
decremented, the result will be FFH or FFFFH with no carry (borrow).

DEC CL Subtract 1 from content of CL register

DEC BP Subtract 1 from content of BP register

DEC BYTE PTR [BX] Subtract 1 from byte at offset [BX] in DS.

DEC WORD PTR [BP] Subtract 1 from a word at offset [BP] in SS.

DEC COUNT Subtract 1 frem byte or word named COUNT in DS.

=

Decrement a byte if COUNT is declared with a DB;
Decrement a word if COUNT is declared with a DW,.

Increment instruction

INC — INC Destination

The INC instruction adds 1 to a specified register or to a memory location. AF, OF, PF, SF, and ZF
are updated, but CF is not affected. This means that if an 8-bit destination containing FFH or a
16-bit destination containing FFFFH is incremented, the result will be all 0's with no carry.

B INC BLAdd 1 to contains of BL register

B INC CX Add 1 to contains of CX register
_
Cdnputer OrganizationPage 19

]

THE NEOTIA UNIVERSITY

INC BYTE PTR [BX] Increment byte in data segment at offset contained in BX.
INC WORD PTR [BX] Increment the word at offset of [BX] and [BX + 1] in the data segment.
INC TEMP Increment byte or word named TEMP in the data segment.

Computer OrganizationPage 20

THE NEOTIA UNIVERSITY

Increment byte if MAX_TEMP declared with DE.
Increment word if MAX_TEMP is declared with DW.
[INC PRICES [BX] Increment element pointed to by [BX] in array PRICES.

Increment a word if PRICES is declared as an array of words;
Increment a byte if PRICES is declared as an array of bytes.

Program:- /* 8 BIT SUBSTRACTION */

MOV AX,0000H
MOV DS,AX
MOV AL [1030H]
MOV BL,[1032H]
SUB AL, BL
MOV [1034H],AX
INT
Observations:-
@ emulator: 8 BIT ADD.bin_ - O X
file math debug view edernal virtualdevices virtualdrive help
& | O dl ») ¢ —
Load reload ﬂ.epbad: singlestep | | run | stepdelayms: 0
| "’9‘“”* | 010808:0011 [e100:000E
Ax[W[_ P1011: il - [MOV AX, ©Doooh 4|
gx [00 [02 % 2% N MOV DS, AX
10 z MOV AL, [©1830h
e | 1813 32 143 8 || oy & goles
ox [es Jos W) B0 12: £ || MOV [01034h1, A
cs [o100 P1017: E W_
e ot (po191S: E || Nop 'l
2 [|of8e | @101A: E | NOP
W || 51818 E || Nop
BP |B@8e ;
: ®181D: E NOP
sip[eess” || B1Q1E: E | NOP
‘ Dl |esss 01a1F : E NOP
os) [ooes || ©1020: Ej| --- -
B “B“INJ = screenl mcel :esell aum | wvars | debugl s-:ackl flags [
[P Random Access Memory - 0 X%
[0100:0080 update Frable O list
0100:8 BS 0B 90 BE D8 AD 30 10-8A 1E 32 10 2A C3 A3 34 =a0r@a2) ¥ H
0100:0918 10 CD 0@ 99 92 90 90 99-90 9@ 99 99 9@ 90 9@ 99 l- E EEEEEEE EI’:‘
9100:0020 90 92 90 90 90 90 90 F4-00 00 00 00 00 00 00 BY EEEEEEE[........
0100:9030 @8 B0 02 V9 @6 0D VO 0D-00 B0 0D 0D 00 B0 BA O ..0.4...........
0100: 0040 @0 0P 00 00 00 G0 0P 00-00 B0 0D 0D 00 6O @B BB 0vuuus
9100:0050 00 0O 00 09 40 00 00 0D-00 00 0D 00 0D 08 BR B0 c.ovvviins
0100: 0060 0P BY 00 00 00 G0 PR BD-00 BY VD 0D V0 0O BA BBoviiviias
AIOR ART0 00 BR B0 G0 A0 O 0R BR-00 R RN G0 OR BR OB OR

Com g

THE NEOTIA UNIVERSITY

Rules for Subtraction [8 bit and 16 bit subtraction)

Ali/p) | Blifp] | Y(o/p] | Carry{o/p)
0 0 0 -

1

0 1 1
1 0 1
1 1 0

Result: -
[1030H]=0
g
[1032H]=02
[1034H]=06

Program:- /* 16 BIT SUBSTRACTION */
MOV AX,0000H

MOV DS,AX

MOV AX,[1030H]

MOV BX,[1032H]

B AX,BX

MOV [1034H], A%

INT

Observations:-

crulator 16 BIT SUB.bin_ - O s

file math debug view exdernal virtual devices wvirtual drive help

(] ql 14

reload step back zingle step

b

L=
Load

’
A
i '

step delay ms: 0

-registersH L_|
s i BT
Bx |57 [23
cx |00 [o0
px |00 |00

(L5

RN TR
55

| SP
EF

[@1030h
[@103Zh

Al

=
-—h
=
I:‘
r EEE T

i elelelelelele
= UUOUUTUUOU

=

M| =
| =
M| =
m| =

]|
D5
ES

T [TH T [T ITH T [T T ITH T T T T

THE NEOTIA UNIVERSITY

[F Random Access Memary = O x

| e100:0000 update * table list

VRREEREE

[1030H]=5468
[1032H]=235
7
[1034H]=311
1

Conclusion: Thus the addressing modes are studied and the 8-bit and 16-bit subtraction is
implamented,

Computer OrganizationPage 23

THE NEOTIA UNIVERSITY

Experiment No.3

Multiplication
Aim:- Write assembly language program to perform 8 bit and 16 bit multiplication

Objective: To study string related operations with the help of string instructions.
To use Multiplication instruction for 8 bit and 16 bit numbers.

Software: 8086 Emulator

Theory:

MUL — MUL Source

This instruction multiplies an unsigned byte in some source with an unsigned byte in AL register
or an unsigned word in some source with an unsigned word in AX register. The source can be a
register or a memory location. When a byte is multiplied by the content of AL, the result
(product) is put in AX. When a word is multiplied by the content of AX, the result is put in DX
and AX registers. If the most significant byte of a 16-bit result or the most significant word of a
32-bit result is 0, CF and OF will both be 0’s. AF PF. SF and ZF are undefined after a MUL
instruction.

If you want to multiply a byte with a word, you must first move the byte to a word location such
as an extended register and fill the upper byte of the word with all O's. You cannot use the CBW
instruction for this, because the CBW instruction fills the upper byte with copies of the most
significant bit of the lower byte.

MUL BH Multiply AL with BH; result in AX

MUL CX Multiply AX with CX; result high word in DX, low word in AX

MUL BYTE PTR [BX] Multiply AL with byte in DS pointed to by [BX]

MUL FACTOR [BX] Multiply AL with byte at effective address FACTOR [BX], if it is declared as type
byte with DB. Multiply AX with word at effective address FACTOR [BX], if it is declared as type
word with DW. MOV AX, MCAND_16 Load 16-bit multiplicand into AX

MOV CL, MPLIER_8 Load 8-bit multiplier into CL

MOV CH, O0H Set upper byte of CX to all 0’s

MUL CX AX times CX; 32-bit result in DX and AX

IMUL - IMUL Source

This instructicn multiplies a signed byte from source with a signed byte in AL or a signed word
from some source with a signed word in AX. The source can be a register or a memory location.
When a byte from source is multiplied with content of AL, the signed result (product) will be put
in AX. When a word from source is multiplied by AX, the result is put in DX and AX. If the
maghnitude of the product does not require all the bits of the destination, the unused byte /
word will be filled with copies of the sign bit. If the upper byte of a 16-bit result or the upper
word of a 32-bit result contains only copies of the sign bit (all 0's or all 1's}, then CF and the OF
will both he O; If it contains a part of the product, CF and OF will both be 1. AF, PF, SF and ZF are

Computer OrganizationPage 24

THE NEOTIA UNIVERSITY

undefined after IMUL.

If you want to multiply a signed byte with a signed word, you must first move the byte into a
word location and fill the upper byte of the word with copies of the sign bit. If you move the
byte into AL, you can use the CBW instruction to do this.

Computer OrganizationPage 25

THE NEOTIA UNIVERSITY

IMUL BH Multiply signed byte in AL with signed byte in BH; result in AX.
IMULAX Multiply AX times AX; result in DX and AX
MOV CX, MULTIPLIER Load signed word in CX

STRING MANIPULATION INSTRUCTIONS

MOVS — MOVS Destination String Name, Source 5tring Name

MOVSB — MOVSB Destination String Name, Source String Name

MOVSW — MOVSW Destination String Name, Source String Name

This instruction copies a byte or a word from location in the data segment to a location in the
extra segment. The offset of the source in the data segment must be in the Sl register. The offset
of the destination in the extra segment must be in the DI register. For multiple-byte or multiple-
word moves, the number of elements to be moved is put in the CX register so that it can
function as a counter. After the byte or a word is moved, Sl and DI are automatically adjusted to
point to the next source element and the next destination element. If DF is O, then Sl and DI will
incremented by 1 after a byte move and by 2 after a word move. If DF is 1, then Sl and DI will be
decremented by 1 after a byte move and by 2 after a word move. MOVS does not affect any
flag. When using the MOVS instruction, you must in some way tell the assembler whether you
want to move a string as bytes or as word. There are two ways to do this. The first way is to
indicate the name of the source and destination strings in the instruction, as, for example.
MOVS DEST, SRC. The assembler will code the instruction for a byte / word move if they were
declared with a DB / DW. The second way is to add a “B” or a “W” to the MOVS mnemonic.
MOVSB says move a string as bytes; MOVSW says move a string as words.

MOV SI, OFFSET SOURCE Load offset of start of source string in DS into SI

MOV DI, OFFSET DESTINATION Load offset of start of destination string in ES into DI

CLD Clear DF to auto increment Sland DI after move

MOV CX, 04H Load length of string into CX as counter

REP MOVSB Move string byte until CX'=0

LODS / LODSB / LODSW {LOAD STRING BYTE INTO AL OR STRING WORD INTO AX)

This instruction copies a byte from a string location pointed to by Sl to AL, or a word from a
string location pointed to by SI to AX. If DF is 0, S| will be automatically incremented (by 1 for a
hyte string, and 2 for a word string) to point to the next element of the string. If DFis 1, SI will
be automatically decremented (by 1 for a byte string, and 2 for a word string) to point to the
previous element of the string. LODS does not affect any flag.

CLD Clear direction flag so that Sl is auto-incremented

MOV SI, OFFSET SOURCE Paint Sl to start of string

LODS SOURCE Copy a byte or a word from string to AL or AX

Note: The assembler uses the name of the string to determine whether the string is of type bye
or type word. Instead of using the string name to do this, you can use the mnemonic LODSB to
tell the assembler that the string is type byte or the mnemonic LODSW to tell the assembler
that the string is of type word.

STOS / STOSB / STOSW (STORE STRING BYTE OR STRING WORD})

This instruction copies a byte from AL or a word from AX to a memory location in the extra
segment pointed to by DI In effect, it replaces a string element with a byte from AL or a word
from AX. After the copy, DI is automatically incremented or decremented to point to next or

Computer OrganizationPage 26

THE NEOTIA UNIVERSITY

previous element of the string, If DF is cleared, then DI will automatically incremented by 1 for a
byte string and by 2 for a word string. If Dl is set, DI will be automatically decremented by 1 for a
byte string and by 2 for a word string. STOS does not affect any flag.

Computer OrganizationPage 27

THE NEOTIA UNIVERSITY

MOV DI, OFFSET TARGET

STOS TARGET

Note: The assembler uses the string hame to determine whether the string is of type byte or
type word. If it is a byte string, then string byte is replaced with content of AL. If it is a word
string, then string word is replaced with content of AX.

MOV DI, OFFSET TARGET

STOSB

“B” added to STOSB mnemonic tells assembler to replace byte in string with byte from AL.
STOSW would tell assembler directly to replace a word in the string with a word from AX.

CMPS f CMPSB / CMPSW (COMPARE STRING BYTES OR STRING WORDS)

This instruction can be used to compare a byte / word in one string with a byte / word in
another string. Sl is used to hold the offset of the hyte or word in the source string, and Dl is
used to hold the offset of the byte or word in the destination string.

The AF, CF, OF, PE, SF, and ZF flags are affected by the comparison, but the two operands are not
affected. After the comparison, SI and DI will automatically be incremented or decremented to
point to the next or previous element in the two strings. If DF is set, then S| and DI will
automatically be decremented by 1 for a byte string and by 2 for a word string. If DF is reset,
then Sl and DI will automatically be incremented by 1 for byte strings and by 2 for word strings.
The string pointed to by SI must be in the data segment. The string pointed to by DI must be in
the extra segment.

The CMPS instruction can be used with @ REPE or REPNE prefix to compare all the elements of a
string.

MOV SI, OFFSET FIRST Point S| to source string

MOV DI, OFFSET SECOND Point DI to destination string

CLD DF cleared, Sl and DI will auto-increment after compare

MOV CX, 100 Put number of string elements in CX

REPE CMPSB Repeat the comparison of string bytes until end of string

or until compared bytes are not equal

CX functions as a counter, which the REPE prefix will cause CX to be decremented after each
compare. The B attached to CMPS tells the assembler that the strings are of type byte. If you
want to tell the assembler that strings are of type word, write the instruction as CMPSW. The
REPE CMPSW instruction will cause the pointers in S| and DI to be incremented by 2 after each
compare, if the direction flag is set.

SCAS / SCASB / SCASW (SCAN A STRING BYTE OR A STRING WORD)

SCAS compares a byte in AL or a word in AX with a byte or a word in ES pointed to by DI
Therefore, the string to be scanned must be in the extra segment, and DI must contain the
offset of the byte or the word to be compared. If DF is cleared, then DI will be incremented by 1
for byte strings and by 2 for word strings. If DF is set, then DI will be decremented by 1 for byte
strings and by 2 for word strings. SCAS affects AF, CF, OF, PF, SF, and ZF, but it does not change
either the operand in AL {AX) or the operand in the string.

The following program segment scans a text string of 80 characters for a carriage return, ODH,
and puts the offset of string into DI:

MOV DI, OFFSET STRING

Computer OrganizationPage 28

THE NEOTIA UNIVERSITY

MOV AL, ODH Byte to be scanned for into AL
MOV CX, 80 CX used as element counter

Computer OrganizationPage 29

THE NEOTIA UNIVERSITY

CLD Clear DF, so that Dl auto increments

REPNE SCAS STRING Compare byte in string with byte in AL

REP / REPE / REPZ / REPNE / REPNZ (PREFIX)

(REPEAT STRING INSTRUCTION UNTIL SPECIFIED CONDITIONS EXIST)

REP is a prefix, which is written before one of the string instructions. It will cause the CX register
to be decremented and the string instruction to be repeated until CX = 0. The instruction REP
MOVSB, for example, will continue to copy string bytes until the number of bytes loaded into CX
has been copied. REPE and REPZ are two mnemonics for the same prefix. They stand for repeat
if equal and repeat if zero, respectively. They are often used with the Compare String instruction
or with the Scan String instruction. They will cause the string instruction to be repeated as long
as the compared bytes or words are equal (ZF = 1) and CX is not yet counted down to zero. In
other words, there are two conditions that will stop the repetition: CX = 0 or string bytes or
words not equal. REPE CMPSB Compare string bytes until end of string or until string bytes not
equal. REPNE and REPNZ are also two mnemonics for the same prefix. They stand for repeat if
not equal and repeat if not zero, respectively. They are often used with the Compare String
instruction or with the Scan String instruction. They will cause the string instruction to be
repeated as long as the compared bytes or words are not equal (ZF = 0) and CX is not yet
counted down to zero.

REPNE SCASW Scan a string of word until a word in the string matches the word

in AX or until all of the string has been scanned.

The string instruction used with the prefix determines which flags are affected.

Programi- /* 8 BIT MULTIPLICATION */
MOV AX,0000H

MOV DS,AX

MOV AL, [1030H]

MOV BL,[1032H]

MUL BL

MOV [1034H],AX

INT

Computer OrganizationPage 30

THE NEOTIA UNIVERSITY

=mulator: 8 BIT MULbin_ - O X
file math debug wview edernal wvirtual devices wvirtual drive help
= ‘) ql I> ¥l T e
Load reload step back single step | §] run..... step delay ms: 0
[rAesits Tl | @180:8011 | B108:8011
ax [on Jou : -
ox 00 [02 A |
2| [D10360h]
%[00 [o8 : [01032h]
% oo na | T AX
cs [ot00 G | R
NTIE 4 '
55 o100 Bee i
5P |FFFE . Hgg
T ;
Sl iﬂﬂﬂﬂ Ei Hgg
W ER[TTT E! | NOP
LS iﬂﬂﬂﬂ ELJ = _:J
i _1[” s | soreen | su:uuru:e| reget] au | Wars | del:uug| stack, | flags l

THE NEOTIA UNIVERSITY

17 Random Access Memory = a X

8100: 0000 update @ table st

L

0100:0000 B8 00 90 8E D8 AQ 39 10-8A 1E 32 10 F6 E3 A3 34 3..A+80r242) TG4
0100:0010 10 CD @2 92 92 90 90 90-90 90 90 90 90 9@ 90 90 V=, EEEEEEEEEEEEE
0100:0020 90 90 90 90 90 90 90 F4-00 00 V0 00 VY VY Q0 VY EEEEEEE[. o viins
0100:0030 02 00 92 00 24 00 B0 V2-00 00 00 90 V0 V0 ©Y 0a Qs ¥iinnni
0100:0040 @2 00 Y0 00 20 00 V0 VO-0V V0 02 V0 @Y B BB VB
0100:0050 00 00 20 00 00 02 @Y VY-V0 V0 02 00 VO 00 RO V0
0100:0060 @2 V2 90 VO 00 00 V0 VO-00 VO 0V V@ BV B @B V@
A100- 0070 00 GO AR 0OA OA OR DR DO-D0 00 00 AR A OR 0OR 07

Rules for Multiplication (8 bit and 16 bit Multiplication)

Ali/p) | Bli/p) | Ylo/p] | Carry(o/p)
0 0 0 -
0 i 0 s
1 0 0 -
q 1 1 2
Result:

[1030H]=0

2

[1032H]=0

2

[1034H]=0

4

Program:- /* 16 BIT MULTIPLICATION */
MOV AX,0000H

MOV DS,AX

MOV AX,[1030H]

MOV BX,[1032H]

MUL BX

MOV [1034H],BX

INT

Observations:-

Computer OrganizationPage 32

THE NEOTIA UNIVERSITY

8 crulator: 16 BIT MULbin_ - O ><

file math debug wview external wirtual devices virtual drive help

= ‘ N 4l Ip

4
g
i

step delay ms: 0

Load reload step back single step

= registersH B 1
ax [on o1
o [a2 [o1
i [oo [0
ox [08 [on
C5 18

IF
55
5P
BF
5l gea@
] geao@
D5 |066a
ES 9188

X .
@1030h]
B1832h]

1934h1, BX

==

AE-I‘—}

Y ="
@&&SE&&SE&&S@@

e e ek e ke e Bk

)

M o=
| =+
M| =
mi =

||
|

Vars l del:uug] stack, | flags ‘

SHREEHEEEHENEENS GEHE) N
ITh TR TR TR [TH TR [TR TR TR TR T TR T [T

EEEEE

FCTEEn | SDU[CE' reset ‘ aLls

THE NEOTIA UNIVERSITY

rF Random Access Memaony - a =
[o1e0:0000 update @ table © list

2120: 2000 B8 00 GO 8E D8 Al 20 10-8B 1E 22 10 F7 EZ 89 1E q .. AkiOria2raea
a1e2: 0012 34 10 CD 08 290 92 90 90-90 90 99 90 90 20 90 98 g
Q120: 0020 S0 99 90 9@ 90 90 9@ F0-F4 20 DO Q8 VB 5] G 5] EEEEEEEE [vxn»nnn
2120:08238 @1 22 01 02 01 02 20 20-20 B0 00 B0 2 0L BB B2 GOE000.vunvn
2120: 0040 G 20 00 B0 00 00 00 B0-00 0D 00 00 00 PR BA B cccvinennss
QlE0: 0050 00 20D 00 B0 6D 00 00 DD-00 D PO V0 OB OB BB BB
@2100: 006 @0 20 00 b0 B0 00 2@ B0-B0 0B U6 DY 60 BB B BB
A1nA - AT ;A AR i AR GG i 0 -0 AR GG GG 0 B R (A

Result:-
[1030H]=0102
[1032H]=0102
[1034H]=0104

Conclusion: Thus the string instructions are studied and multiplication for 8 bit and 16 bit.

Computer OrganizationPage 34

THE NEOTIA UNIVERSITY

Experiment No.4

Division

Aim:- Write assembly language program to perform &8 bit and 16 bit division.

Objective: Describe the conditional and unconditional jump instructions.,
To study and implement the division instructions.

Software: 8086 Emulator

Theory:
DIV — DIV Source

This instruction is used to divide an unsigned word by a byte or to divide an unsigned double
word (32 hits) by a word. When a word is divided by a byte, the word must be in the AX register.
The divisor can be in a register or a memory location. After the division, AL will contain the 8-bit
quotient, and AH will contain the 8-bit remainder. When a double word is divided by a word, the
most significant word of the double word must be in DX, and the least significant word of the
double word must be in AX. After the division, AX will contain the 16-bit quotient and DX will
contain the 16-bit remainder. If an attempt is made to divide by O or if the quotient is too large
to fit in the destination (greater than FFH / FFFFH), the 8086 will generate a type O interrupt. All
flags are undefined after a DIV instruction.

If you want to divide a byte by a byte, you must first put the dividend byte in AL and fill AH with
all O’s. Likewise, if you want to divide a word by another word, then put the dividend word in AX
and fill DX with all 0.

DIV BL Divide word in AX by byte in BL; Quotient in AL, remainder in AH

DIV CX Divide down word in DX and AX by word in CX;

Quotient in AX, and remainder in DX.

DIV SCALE [BX] AX / (byte at effective address SCALE [BX]) if SCALE [BX] is of type

byte; or (DX and AX) / (word at effective address SCALE[BX]

if SCALE[BX] is of type word

IDIV = IDIV Source

This instruction is used to divide a signed word by a signed byte, or to divide a signed double
word by a signed word.

When dividing a signed word by a signed byte, the word must be in the AX register. The divisor
can be in an 8-bit register or a memory location. After the division, AL will contain the signed
quotient, and AH will contain the signed remainder. The sign of the remainder will be the same
as the sign of the dividend. If an attempt is made to divide by 0, the quotient is greater than 127
(7FH) or less than —127 (81H), the 8086 will automatically generate a type O interrupt.

When dividing a sighed double word by a sighed word, the most significant word of the

Computer OrganizationPage 35

THE NEOTIA UNIVERSITY

dividend (numerator) must be in the DX register, and the least significant word of the dividend
must be in the AX register. The divisor can be in any other 16-bit register or memory location.
After the division, AX will contain a signed 16-bit quotient, and DX will contain a signed 16-bit
remainder. The sign of the remainder will be the same as the sign of the dividend. Again, if an

attempt is

Computer OrganizationPage 36

THE NEOTIA UNIVERSITY

made to divide by 0, the quotient is greater than +32,767 (7FFFH) or less than —32,767 (8001H),
the 8086 will automatically generate a type O interrupt.
All flags are undefined after an IDIV.

If you want to divide a signhed byte by a signed byte, you must first put the dividend byte in AL
and sign-extend AL into AH. The CBW instruction can be used for this purpose. Likewise, if you
want to divide a sighed word by a signed word, you must put the dividend word in AX and
extend the sign of AX to all the bits of DX. The CWD instruction can be used for this purpose.
IDIV BL Signed word in AX/signed byte in BL

IDIV BP Signed double word in DX and AX/signed word in BP
IDIV BYTE PTR [BX] AX / byte at offset [BX] in DS

CWB

CWD

TRANSFER-OF-CONTROL INSTRUCTIONS

JMP (UNCONDITIONAL JUMP TO SPECIFIED DESTINATION)

This instruction will fetch the next instruction from the location specified in the instruction
rather than from the next location after the IMP instruction. If the destination is in the same
code segment as the JMP instruction, then only the instruction pointer will be changed to get
the destination location. This is referred to as a near jump. If the destination for the jump
instruction is in a segment with a name different from that of the segment containing the JMP
instruction, then both the instruction pointer and the code segment register content will be
changed to get the destination location. This referred to as a for jump. The JMP instruction does
not affect any flag.

JMP CONTINUE

This instruction fetches the next instruction from address at label CONTINUE. If the label is in
the same segment, an offset coded as part of the instruction will be added to the instruction
pointer to produce the new fetch address. If the label is another segment, then IP and CS will be
replaced with value coded in part of the instruction. This type of jump is referred to as direct
because the displacement of the destination or the destination itself is specified directly in the
instruction.

JA / INBE (JUMP IF ABOVE / JUMP IF NOT BELOW OR EQUAL)

If, after a compare or some other instructions which affect flags, the zero flag and the carry flag
both are 0, this instruction will cause execution to jump to a label given in the instruction. If CF
and ZF are not both 0, the instruction will have no effect on program execution.

CMP AX, 4371H Compare by subtracting 4371H from AX

JA NEXT Jump to label NEXT if AX above 4371H

CMP AX, 4371H Compare (AX —4371H)

JNBE NEXT Jump to label NEXT if AX not below or equal to 4371H

JAE /JNB / INC

(JUMP IF ABOVE OR EQUAL / JUMP IF NOT BELOW / JUMP IF NO CARRY)

If, after a compare or some other instructions which affect flags, the carry flag is 0, this

Computer OrganizationPage 37

THE NEOTIA UNIVERSITY

instruction will cause execution to jump to a label given in the instruction. f CF is 1, the
instruction will have no effect on program execution.
CMP AX, 4371H Compare (AX — 4371H)

JAE NEXT Jump to label NEXT if AX above 4371H
CMP AX, 4371H Compare (AX — 4371H)

Computer OrganizationPage 38

THE NEOTIA UNIVERSITY

JNB NEXT Jump to label NEXT if AX not below 4371H
ADD AL, BL Add two bytes
JNC NEXT If the result with in acceptable range, continue

JB /JC /INAE (JUMP IF BELOW / JUMP IF CARRY / JUMP IF NOT ABOVE OR EQUAL)

If, after a compare or some other instructions which affect flags, the carry flag is a 1, this
instruction will cause execution to jump to a label given in the instruction. f CF is O, the
instruction will have no effect on program execution.

CMP AX, 4371H Compare (AX —4371H)

JB NEXT Jump to label NEXT if AX below 4371H

ADD BX, CX Add two words

JCNEXT Jump to label NEXT if CF=1

CMP AX, 4371H Compare (AX —4371H)

JNAE NEXT Jump to label NEXT if AX not above or equal to 4371H

IBE / INA (JUMP IF BELOW OR EQUAL / JUMP IF NOT ABOVE)

If, after a compare or some other instructions which affect flags, either the zero flag or the carry
flag is 1, this instruction will cause execution to jump to a label given in the instruction. If CFand
ZF are both 0, the instruction will have no effect on program execution.

CMP AX, 4371H Compare (AX —4371H)

JBE NEXT Jump to label NEXT if AX is below or equal to 4371H
CMP AX, 4371H Compare (AX — 4371H)
JNA NEXT Jump to label NEXT if AX not above 4371H

JG / JNLE {JUMP IF GREATER / JUMP IF NOT LESS THAN OR EQUAL)

This instruction is usually used after a Compare instruction. The instruction will cause a jump to
the label given in the instruction, if the zero flag is O and the carry flag is the same as the
overflow flag.

CMP BL, 39H Compare by subtracting 39H from BL

JG NEXT Jump to label NEXT if BL more positive than 39H
CMP BL, 39H Compare by subtracting 39H from BL
JNLE NEXT Jump to label NEXT if BL is not less than or equal to 39H

JGE / JNL {JUMP IF GREATER THAN OR EQUAL / JUMP IF NOT LESS THAN)

This instruction is usually used after a Compare instruction. The instruction will cause a jump to
the label given in the instruction, if the sign flag is equal to the overflow flag.

CMP BL, 39H Compare by subtracting 39H from BL

JGE NEXT Jump to label NEXT if BL more positive than or equal to 39H

CMP BL, 39H Compare by subtracting 39H from BL

JNL NEXT Jump to label NEXT if BL not less than 39H

JL / INGE {JUMP IF LESS THAN / JUMP IF NOT GREATER THAN OR EQUAL)

This instruction is usually used after a Compare instruction. The instruction will cause a jump to
the label given in the instruction if the sign flag is not equal to the overflow flag,

CMP BL, 39H Compare by subtracting 39H from BL

JL AGAIN Jump to label AGAIN if BL more negative than 39H
CMP BL, 39H Compare by subtracting 39H from BL

Computer OrganizationPage 39

THE NEOTIA UNIVERSITY

JNGE AGAIN Jump to label AGAIN if BL not more positive than or equal to
39H
JLE / ING {JUMP IF LESS THAN OR EQUAL / JUMP IF NOT GREATER)

Computer OrganizationPage 40

THE NEOTIA UNIVERSITY

This instruction is usually used after a Compare instruction. The instruction will cause a jump to
the label given in the instruction if the zero flag is set, or if the sign flag not equal to the
overflow flag.

CMP BL, 39H Compare by subtracting 39H from BL

JLE NEXT Jump to label NEXT if BL more negative than or equal to 39H
CMP BL, 39H Compare by subtracting 39H from BL

JNG NEXT Jump to label NEXT if BL not more positive than 39H
JE /JZ (JUMP IF EQUAL / JUMP IF ZERO)

This instruction is usually used after a Compare instruction. If the zero flag is set, then this
instruction will cause a jump to the label given in the instruction.
CMP BX, DX Compare (BX-DX)

JE DONE Jump to DONE if BX = DX

INE / JNZ (JUMP NOT EQUAL / JUMP IF NOT ZERO)

This instruction is usually used after a Compare instruction. If the zero flag is 0, then this
instruction will cause a jump to the label given in the instruction.

ADD AX, 0002H Add count factor 0002H to AX

DEC BX Decrement BX

JNZ NEXT Jump to label NEXT if BX [0

JS (JUMP IF SIGNED / JUMP IF NEGATIVE)
This instruction will cause a jump to the specified destination address if the sign flag is set. Since
a 1in the sign flag indicates a negative signed number, you can think of this instruction as saying
“jump if negative”.
Bl ADD BL, DH Add signed byte in DH to signed byte in DL

JS NEXT Jump to label NEXT if result of addition is negative number
JNS (JUMP IF NOT SIGNED /JUMP IF POSITIVE)
This instruction will cause a jump to the specified destination address if the sign flag is 0. Since a
0 in the sign flag indicate a positive sighed number, you can think to this instruction as saying
“jump if positive”.
DEC AL Decrement AL
JNS NEXT Jump to label NEXT if AL has not decremented to FFH
JP /JPE (JUMP IF PARITY / JUMP IF PARITY EVEN)
If the number of 1's left in the lower 8 bits of a data word after an instruction which affects the
parity flag is even, then the parity flag will be set. If the parity flag is set, the JP / JPE instruction
will cause a jump to the specified destination address.

JNP /JPO (JUMP IF NO PARITY / JUMP IF PARITY ODD)

If the number of 1's left in the lower 8 bits of a data word after an instruction which affects the
parity flag is odd, then the parity flag is 0. The JNP / JPO instruction will cause a jump to the
specified destination address, if the parity flagis Q.

Computer OrganizationPage 41

THE NEOTIA UNIVERSITY

JO (JUMP IF OVERFLOW)

The overflow flag will be set if the magnitude of the result produced by some signed arithmetic
operation is too large to fit in the destination register or memory location. The JO instruction
will cause a jump to the destination given in the instruction, if the overflow flag is set.

Computer OrganizationPage 42

THE NEOTIA UNIVERSITY

ADD AL, BL Add signed bytes in AL and BL

JO ERROR Jump to label ERROR if overflow from add

JNO (JUMP IF NO OVERFLOW)

The overflow flag will be set if some signed arithmetic operation is too large to fit in the
destination register or memory location. The JNO instruction will cause a jump to the
destination given in the instruction, if the overflow flagis not set.

ADD Al, BL Add signed byte in AL and BL

JNO DONE Process DONE if no overflow

JCXZ (JUMP IF THE CX REGISTER IS ZERO)

This instruction will cause a jump to the label to a given in the instruction, if the CX register
contains all O’s. The instruction does not look at the zero flag when it decides whether to jump
or not.

JCXZ SKIP If CX =0, skip the process

SUB [BX], O7H Subtract 7 from data value

SKIP: ADD C Next instruction

LOOP NEXT Repeat until all elements adjusted

Program;- /* 8 BIT DIVISION */
MOV AX,0000H

MOV DS,AX

MOV

AX,[1030H]

MOV BL,[1032H]

DIV BL

MOV [1034H],AX

INT

Observation:-

Computer OrganizationPage 43

THE NEOTIA UNIVERSITY

crulator 8 BIT DIV.bin_

file math debug wview external wvirtual devices wirtual drive help

5 9 ‘ d > e py f—————
Load reload step back | singlestep | .. .muo....| stepdelay ms:0
'ngiStE'SH . | o100:0011 | o1o00:000E
w [00 [02 | EZESER IR | MOV AX, O0000h 4|
B]ﬁlﬁ B2112: 90 20E ! MOV DS, AX ;
A113: 91 144 [R1836h]
% [e0 o0 || P1B14: a4 E [01032h]
px (88 [es || ©1B15: 144 E .
vl1lé: 144 E MOV [B1834h], AX
o e || BI91L: 39 144 E
P jee11 . -
V119: 144 E
S5 0196 || BIP1A: 144 -
o o | sie 2 i
S0 L] R 144 E
R [TTT Q101E: 144 E‘
ol |eees P1P1F: 98 144 E | NOP
< W P10260: 99 144 E:J B . LJ
B4 il screen] SDU[CE] reset] aux ‘ wars J debug‘ stack] flags J

Computer OrganizationFage 44

THE NEOTIA UNIVERSITY

[P Random Access Memory

2. . ALiOrea2r:<ad
b= EEEEEEEEEEEEE

EEEEEEE[........
-]

*

Result:-
[1030H]=0
8
[1032H]=0
4
[1034H]=0
2

Program: /* 16 BIT DIVISION */
MOV AX,0000H

MOV DS,AX

MOV AX,[1030H]

MOV BX,[1032H]

DIV BX

MOV [1034H],AX

INT

Observation:-

Cor

® emulator: 16 BIT DIV.bin_ —

file math debug wiew edernal wvirtual devices wirtual drive help

= | 0 4l 12 B
tad reload step back | single step | [rn........ step delay ms: 0
rogisters L | 8100:0011 | ©8180:806E
sy |08 [ox | RN - | MOV AX, 00oobh -|
s [o0 [0z MRS : % To1020h
o< [0 |00 | 8%% E , [@1@32h
ox S| 916 E 1034h1, A
o foie0 || 010 E | IR
IP 13911 %N %) E

g1e E NOP
55 [e100 010 E NOP 5
sP [FFFE 8%% E Hgg
EF |o8eg 010 E NOP
sl |eees 010 E NOP
SIIRETTT Q101F: 99 144 E NOP
os (0006 Q122a: 90 144 ELJ ey <
ES |6168 screen | sourCE] reset | AU | vars | debugl stack | flags |

THE NEOTIA UNIVERSITY

[Random Access Memary = O *

@1008:00888 update * table € list

PP:0000 B8 0@ 0@ 8E D8 Al 30 10-8B 1E 32 10 F7 F3 A3 34 3. AFiOr ia2p=20q
g:@a1e 1@ CD @@ 90 20 90 90 90-90 90 90 90 90 90 90 J0 b=,EEEEEEEEEEEEE

(]
A]
(]
N
[\]
\0
(\]
\0
[\
\0
(]
\0
[\]
\0
[\]
\0
[\]
\0
(]
T
T
\]
(]
]
[\]
\]
®
]
[\]
\]
\n]
]
[\]
\]
@
]
@
= M
= M
m
= M
+ Mk
m
M
=

IPRREERCR
Y
VPR
DD
(o)
(o]
ul
o)
Q
(]
Q
(]
o)
(]
Q
(]
(]
]
]
()
(]
Q@
]
(ISJ
(]
Q
]
Q@
(]
Q
]
Q
(]
Q
]
()
(]
)
(]
()

Result:-
[1030H]=08
[1032H]=02
[1034H]=04

Conclusion: In this way we perform & bit and 16 bit division.

Computer OrganizationPage 46

THE NEOTIA UNIVERSITY

Experiment No.5

AND Operation
Aim:- Write assembly language program to perform & bit and 16 hit AND operation.

Ohjective: Describe the AND instructions Operation.

Sofbware: B086 Emulator

Theory:

AND gate

1
o

AND

2 Input AND gate
A, E A B

== |l Ol

— (o=
el Lo X e § e

The AND gate is an electronic cireuit that gives 2 high output {1} only if all its inputs are high. A
dot{.) isused to show the AND operation i.e. A.B. Bear in mind that this dot is sometimes
omitted I.e. AB

Program:- f*& BIT ANDING */
MOY AX,0000H

MOY DS, AX

MOV AL,[1030H]

MOV BL,[1032H]

AMND AL, BL

MOV [1034H],A%

INT

[E=——————————SSSSSS
Computer OrganizationPage 47

THE NEOTIA UNIVERSITY

® emulator: 8 BIT AND.bin_ = O X

file math debug view edernal virtual devices virtualdrive help
= O ‘ q (3 e e &

Load relcad step back single step run step delay ms: 0
e | e108:0011 | 8100:088E

a Jon oo 5161%: o0 ba MoV D8’ %2 B

ax [00 o2 | S MOV AL. [Q1030h

o | 1o 2 1dE | pgrR foieecn

ox [0 oo || 0 012: 30 144 E| || MOV. [9103dh], Al

o [| 910 28 144 & | RN

IP -

o (e || 01019 9@ 144 € i

R1a1A: 90 144 E
s> [Frre || O101B: 90 144 E |
s> [ooo0 || 0101C: 9@ 144 E
0101D: 92 1447€4|f NOP

51 [eo0e R101E: 90 144 E NOP

ol |eses P101F: 90 144 E NOP

os [0008 R1020: 99 444 E:j . & 7]

ES qies sCreen source| iezet | auy vars | debug stack l flags ‘
[F" Random Access Memory 5 O x

P10P: QPP BS PP PO SE D8 AP 3@ 1@-8A 1E 32 1@ 22 C3 A3 34 3. .ALa0r&a2p " G4
0100:0010 1@ CD 90 90 92 99 9@ 99-90 90 90 90 S@ 92 99 90 b=. EEEEEEEEEEEEE
Q1D R20 S0 90 90 90 990 90 9@ F4-00 PP D B BB P2 BB A EEEEEEE[........
0100: 0230 24 20 P2 PO 00 PP-00 02 20 DD 02 P2 PR O 0 T R
Q1P 40 Q0 20 PR PR 0D P20 QP PP-00 0P P2 A B PR BB BB e e
0100: 0250 00 B0 PO PP 0P PP QP PD-00 0D 0D 0D Q0 02 @8 @8 - . .o
P10 60 0 P20 QR PP DD B0 00 DP-00 DD D0 DA B PR BB BB e e
1 AR - AT AR AR AR AR R D AR DR-0E AR B A B A AR G
Result
[1030H]=0
4
[1032H]=0
2
[1034H]=0
0
Brogram:-

/* 16 BIT ANDING */
MOV AX,0000H
MOV DS,AX

Computer OrganizationPage 48

THE NEOTIA UNIVERSITY

MOV AX,[1030H]
MOV BX,[1032H]
AND AX,BX

MOV [1034H],AX
INT

Computer OrganizationPage 49

THE NEOTIA UNIVERSITY

QObservation:-

emulator 16 BIT AND.bin_ — O X
file math debug wview external wvirtual devices wirtual drive help

= | (] | ql > b e

Load reload step back single step | { . . ran....i step delay ms: 0
e | ©108:8811 | ©108:8080EF

gty 1011 o | Moy 53 92 B

Bx [14 [10 | MESES MOV AX. [O1230h

e | GiEi: 2 128 || MoK RA fetesa

ox [as Joo | || O B1a: E | MOV [B1834h1, A!

L5 |91W P1D17: E " %

1= PR1018: E

o I—m 01019: E. NOP

P101A: E| NOP
sP |[FFFE P101B: E NOP
NITTTE 01a1C: E NOP
P101D: E NOP

sl _|‘“"“’ D11E: E NOP

oI |eese 101F : EI NOP

T R1020: E_‘ Y. . %]

55 Iiﬂ s screen | sourcel rezel | aus | vars | dehugl stack | flags |
[F" Random Access Memory s O X

0100: 0000 update | @ table . list
0100: 02V BB 00 00 8E D8 Al 30 10-8B 1E 32 10 23 C3 A3 24 3..ALiria2r# 04
P100:0010 10 CD 00 9@ 92 9@ 9@ 90-90 90 90 90 90 9@ 90 90 b, l*l-g#‘##r-‘#‘ EE
0100: 0020 90 90 90 90 90 90 90 F4-00 VY D0 VB VO VY VB 0 EEEE‘EEEP
0100:0030 10 12 10 14 10 10 00 Q2-00 00 00 0B G0 20 B2 20 PV bois woa i i
P100:0040 0D 20 VB PO DO D 00 OD-00 0D PO DD QD B0 DB POcvrernnenrs
Q100:0050 0D 00 0B PO Q0 QY 00 CV-00 0D PO 0D 0D 20 QB P c'venennes
P100: 0060 0 0B Q0 DR BB PL OB DR-00 BB QB QO BB Pa oo @B
100 0070 DG 06 B0 PR B0 DO O OR-00 B0 D O o0 00 O
Result:-

[1030H]=1012
[1032H]=1014
[1034H]=1010

Conclusion:-

In this way we executed assembly language program for ANDing of two 8 bit and 16 bit

numbers.

Computer OrganizationPage 50

THE NEOTIA UNIVERSITY

Experiment No.b6

OR Operation
Aim:- Write assembly language program to perform 2 bit and 16 bit OR operation.

Ohjective: Describe the OR instructions Operation.

Sofbware: B086 Emulator

Theory:
OR gate

B A

OR

2 Input OR gate
A, E A+B
]

== |l Ol

—=(Ol—|3

1
1
1

The OR gate is an glectronic circuit that gives a high output (1) if one or more of its
inputs are high. A plus (+] is used to show the OR operation.

Frogram:- /® S BIT ORING #*/
MO AX,0000H

RAOY DS, AKX

MOV AL, [L030H]

MOV BL,[1032H]

R ALBL

MOV [1034H],AL

IMNT

Chservation:-

Computer OrganizationPage 51

THE NEOTIA UNIVERSITY

emulator: 8 BIT OR.bin_ — O b4
file math debug view external virtual devices virtualdrive help
L ‘ 0 ‘ ql > | e
Load reload step back single step | { _run. i stepdelay ms: 0
L | 8180:08811 | 8180:086E
A 01011 = MOV AX, O0000h -]
o [00 [z | MEELERES 2 ! [01030h
e 01014 i 5L 01032h
ox foo Joo || 2iB12; E 1034h1, A
r [|| O1014: 2
IP . | |
s e || @1019: E il r
B101A: E
sp [FrrE || Q101B: E|l |
- | G0 81228
sl [e088 || DIQIE: £l
ST D1lF: 92 144 E
s [oss || ©1020: 90 144Eg)] ... g
e Sah SCIEEN ‘ sc-url::el reset l aus I vars I debugl stack [flags
[F" Random Access Memary - O X

6186:686808 update & table € list

PP: 000 B8 90 20 8E D8 AD 3@ 10-8A 1F 32 180 BA C3 AZ 34 3..AFarea2r . 64
20:2010 10 CD 2@ 99 90 92 9@ 90-92 90 9@ 9@ 90 92 90 9@ b=,EEEEEEEEEEEEE
PE: 0020 99 90 90 90 90 9@ 90 F4-00 0D V2 DB DB 0B DB 0O EEEEEEE(........
Qo e B2 P2 P66 D@ D0 DP-00 B0 B0 BB B 0B 0B +.0. ¢

80:8040 %%} 80 00 00 0D 20 DR DD-D0 00 0D OB DB BB 08 BIE. L i S e e b
%)
o

D 00 00 90 20 20 PP-PB B0 D PR B DB O

0:0060 PP 00 0D P20 PP 0P 0P 0P-00 PP PP PP 0O 00 0D OB
0- 070 DO 00 0D G0 DR DD 00 DO-00 OB G0 00 00 GG BR Do

IPRREERS
S

Result:-
[1030H]=04
[1032H]=02
[1034H]=06

Program:-
/* 16 BIT ORING */

MOV AX,0000H
MOV DS,AX
MOV AX,[1030H]

|
Computer OrganizationPage 52

THE NEOTIA UNIVERSITY

MOV BX,[1032H]
OR AX,BX

MOV [1034H],AX
INT

Computer OrganizationPage 53

THE NEOTIA UNIVERSITY

Observation:-

emulator: 16 BIT OR.bin_ = X
file math debug wview external virtual devices virtual drive help
= (ha ’ ql > b)i Ty
Load reload step back singlestep | i run il step delay ms: 0
[regsters L | | @188:8011 | ©100:008E
o P—ﬁ ll 01012 N S. AX =
B« |14 |19 AT} | [B1030h
=l | gigid: : fo163:
DX |88 |Bo - 4
- Q1916: E 19034h1, Al
cs [e108 Q1017: E w_
L medn 61615: E || Nop I
- LG Q101A: E | NOP
sP [FFFE Q191B: E NOP
BF (0008 R101C: E NOP
Q131D: E NOP
st [e008 Q101E: £ NOP
DI [eoee R1A1F: £ NOP
ps [eses 21020: 98 1449 E!_ b . . '+
ES |B1 e screen | sourcal reset | aus I vars | debug‘ stack [flags }
[F' Random Access Memory - O X
0100: 0800 update @ table list
Plop: P00 B8 PO @0 8E D8 Al 30 1@-8B 1E 32 10 BB C3 A3 24 3..AFi0ria2»o 04
P120:0910 19 CD 2@ 90 99 90 9@ 90-90 92 99 90 99 92 9@ 90 b= EEEEEEEEEEEEE
P1PR: P20 S0 99 90 90 92 90 90 F4-00 B PP Q0 PP DB PO OB EEEEEEEl........
P1eR: 230 12 12 10 14 10 16 00 02-00 02 D2 Q0 PP DB DO OB [2
P1oP: 240 0P PO 00 00 PP PR 0P DO-00 00 D2 D0 OB 00 BB BB
P1PR:PESE 0P PO 0D 00 DY DB PP DP-00 00 PP D0 OB 00 BB BB
P100: 0060 PP PP PP 0D 0D PO B0 DD-00 DQ 0P 00 @0 00 B BB0...
1A AATR AR G D DR G B A0 A-00 AR G G D R D DG

Result:-
[1030H]=1012
[1032H]=1014
[1034H]=1016

Conclusion:-

In this way we executed assembly language program for ORing of two 8 bit and 16 bit

numbers.

Computer OrganizationPage 54

THE NEOTIA UNIVERSITY

Experiment No.7

XOR Operation
Aim:- Write ascembly language program to perform 8 hit and 16 bit XOR operation.

Objactive: Describe the XOR instructions Operation.

Software: 8086 Emulator

Theory:

EXOR pate

5] >——aes
B !

EOR

2 Input EXOR gate

A B A BB
1 a 0
1] 1 1
] a 1
1 1 0

The ‘Exclusive-0OR' gate is g circuit which will give a high output if either, but not
both, of its two inputs are high. An encircled plus sign { @) is used to show the EOR
operation.

Program:-
SEBBIT XORING */

MOV AX,0000H
MOV DS, AX
MOV AL, [L030H]
MOV BL,[1032H]
XOR AL, BL

MOV [1034H],A%
INT

Observation:-

Computer OrganizationPage 55

THE NEOTIA UNIVERSITY

8 crulator 8 BIT XOR.bin_ - O *
file math debug view external virtual devices wvirtual drive help
@'0 dl 1> b>|......
Load reload step back single step run step delay ms: 0
registers ———— | o108:0011 | @100:000E
s oo oo | EEEES MOV DS, AX =
o [00 [o2 2 MOV AL, [@1@32h
el | B1313 Rl E | Moy o gpreea
ox [os fos ||| £101E: E || MOV [01@34h1, A
cs [o108 || @1017: £ q&(m—
P [ee1 || ©1018: E -
v1019: E NOP
S [s108 || p1GTA: & | Nop B
sP [FFFE R121B: E NOP
BP [0000 0101C: E NOP
©101D: E NOP
5. [oo08 R1Q1E: E | NOP
ST R101F: E| NOP
o [oss || 91020: 50 144 E\ . " .
ES |B1ﬂﬂ soreen | sourcel reset | i I vars I debug] stack | flags I
[F' Randorm Access Memory = m} *
a108: 0880 update * table © list
R1PD: 00D B8 D @@ 8E D8 AR 30 10-8A 1E 32 18 32 C3 A3 24 3..AFa0rea2»2l04
R1E: 01 10 CD 90 S0 90 S8 90 S90-92 90 90 9@ 90 90 90 90 »=.EEEEEEEEEEEEE
R1PD: 0020 90 992 90 S0 90 S0 90 F4-00 @0 20 B0 20 OB QB PO EEEEEEE[.
R1PD: 0030 4 D B2 P20 B6 PR DD PP-00 G0 Q0 B0 P OB QB PO - T
R1PD: 0040 Q0 QD 00 P20 00 00 D0 QP0-00 B0 20 00 O PO AR BB 0
R1PD: 0050 Q0 QD 00 P20 00 R D0 QP-00 00 20 00 O B0 A BB
RIPD:0R6D Q0 DD 00 P20 00 R DD PP-00 B0 20 00 O B0 A BB
A1 A = AT A A AR A A A AR A AR-00 A A Ak Ak Ak Ak ik
Result:-
[1030H]=0
4
[1032H]=0
2
[1034H]=0
6
Program:-

/* 16 BIT XORING */
MOV AX,0000H
MOV DS,AX

MOV AX,[1030H]
MOV BX,[1032H]
XOR AX,BX

Computer OrganizationPage 56

THE NEOTIA UNIVERSITY

MOV [1034H],AX
INT

Computer OrganizationPage 57

THE NEOTIA UNIVERSITY

QObservation:-

M =mnulator: 16 BIT XOR.bin_ - O x
file math debug view external wvirtual devices wvirtual drive help
m"v||:l‘<ll > | 1
Load reload step back singlestep | i run._ step delay ms: 0
' 'EgiS‘E'SH L | | @188:8611 | ©108:066E
s [0 [0z 11 =] [MOV AX, 0Q00oh 2|
ex |00 [12 12 NI MOV DS, AX
: MOV AX, [@1030h
= i || gagia: 52 11 g || o 65 LIS
el 16: E | MOV [@i@34h1, A!
cs [o100 17: E | Y —
1P |gg11 18: E
5 o100 13 & | Nop n
sP [FFFE 1B: E NOP
- s | S181G1 8 122 2 || oo
s |ee00 1E : E | NOP
oI |oeee 1F E NOP
ps [0008 20: E_;j - o
£3 |ﬂ1ﬂﬂ screen I sourcel reset] EIVE l varLI debugl stack J flags J
[F' Random Access Memary . m} *

8180: 60008 update * table list

100:0000 B8 90 @ 8E D8 Al 30 19-8B 1E 32 1@ 33 C3 A3 24 3..AFiria2»3}04 |7,
100:0010 10 CD @@ 90 98 99 9@ 90-90 90 99 9@ 90 98 99 90 b=, EEEEEEEEEEEEE
PR:0020 99 90 90 90 90 90 90 F4-00 BV Q0 VP BR 2B B2 0O EE%EEEE[‘

REREREE

Computer OrganizationPage 58

THE NEOTIA UNIVERSITY

Experiment No.8

Even and Odd number

Aim:- Write An Assembly Language Program To Check Whether Entered Number Is Even Or
Odd.

Objective: Describe even and odd instructions Operation.

Software: 8086 Emulator

Theory: Describe the Miscellanecus Data Transfer Instructions.
To study and implement the jump instructions to find whether entered number is even
or add.

Miscellaneous Data Transfer Instructions
CMP — CMP Destination, Source

This instruction compares a byte / word in the specified source with a byte / word in the
specified destination. The source can be an immediate number, a register, or a memory
location. The destination can be a register or a memory location. However, the source and the
destination cannot both be memory locations. The comparison is actually done by subtracting
the source byte or word from the destination byte or word. The source and the destination are
not changed, but the flags are set to indicate the results of the comparison. AF, OF, SF, ZF, PF,
and CF are updated by the CMP instruction. For the instruction CMP CX, BX, the values of CF, ZF,
and SF will be as follows:

CF ZF SF
CX=BXO0 1 0 Result of subtraction is 0
CX>BXO0 0 0 No borrow required, so CF=0
CX<BX1 0 1 Subtraction requires borrow, so CF= 1

f CMP AL, 01H Compare immediate number 01H with byte in AL
B CMP BH, CL Compare byte in CL with byte in BH
CMP CX, TEMP Compare word in DS at displacement TEMP with word at CX

XCHG — XCHG Destination, Source
Bl The XCHG instruction exchanges the content of a register with the content of another register or
[with the content of memory location(s). It cannot directly exchange the content of two memory
locations. The source and destination must both be of the same type (bytes or words). The
segment registers cannot be used in this instruction. This instruction does not affect any flag.
XCHG AX, DX Exchange word in AX with word in DX

Computer OrganizationPage 59

THE NEOTIA UNIVERSITY

XCHG BL, CH Exchange byte in BL with byte in CH

Computer OrganizationPage 60

THE NEOTIA UNIVERSITY

LAHF (COPY LOW BYTE OF FLAG REGISTER TO AH REGISTER)

The LAHF instruction copies the low-byte of the 8086 flag register to AH register. It can then be
pushed onto the stack along with AL by a PUSH AX instruction. LAHF does not affect any flag.
SAHF (COPY AH REGISTER TO LOW BYTE OF FLAG REGISTER)

The SAHF instruction replaces the low-byte of the 8086 flag register with a byte from the AH
register. SAHF changes the flags in lower byte of the flag register.
XLAT / XLATB — TRANSLATE A BYTE IN AL

The XLATB instruction is used to translate a byte from one code (8 bits or less) to another code
(8 bits or less). The instruction replaces a byte in AL register with a byte pointed to by BX in a
lookup table in the memory. Before the XLATB instruction can be executed, the lookup table
containing the values for a new code must be put in memory, and the offset of the starting
address of the lookup table must be loaded in BX. The code byte to be translated is put in AL
The XLATB instruction adds the byte in AL to the offset of the start of the table in BX. It then
copies the byte from the address pointed to by {BX + AL) back into AL. XLATB instruction does
not affect any flag,

8086 routine to convert ASCIl code byte to EBCDIC equivalent: ASCIl code byte is in AL at the
start, EBCDIC code in AL after conversion.

MOV BX, OFFSET EBCDIC Point BX to the start of EBCDIC table in DS

XLATB Replace ASCIl in AL with EBCDIC from table.
IN —IN Accumulator, Port

The IN instruction copies data from a port to the AL or AX register. If an 8-bit port is read, the
data will go to AL If a 16-bit port is read, the data will go to AX.

The IN instruction has two possible formats, fixed port and variable port. For fixed port type, the
8-bit address of a port is specified directly in the instruction, With this form, any one of 256
possible ports can be addressed.

IN AL, OC8H Input a byte from port OC8H to AL

IN AX, 34H Input a word from port 34H to AX

For the variable-port form of the IN instruction, the port address is loaded into the DX register
before the IN instruction. Since DX is a 16-bit register, the port address can be any number
between O000H and FFFFH. Therefore, up to 65,536 ports are addressable in this mode.

MOV DX, OFF78H Initialize DX to point to port

IN AL, DX Input a byte from 8-bit port OFF/8H to AL

IN AX, DX Input a word from 16-bit port OFF78H to AX

The variable-port IN instruction has advantage that the port address can be computed or
dynamically determined in the program. Suppose, for example, that an 8086-based computer
needs to input data from 10 terminals, each having its own port address. Instead of having a
separate procedure to input data from each port, you can write one generalized input
procedure and simply pass the address of the desired port to the procedure in DX,

The IN instruction does not change any flag.

Computer OrganizationPage 61

THE NEOTIA UNIVERSITY

OUT —OUT Port, Accumulator
The OUT instruction copies a byte from AL or a word from AX to the specified port. The OUT
instruction has two possible forms, fixed port and variable port.

Computer OrganizationPage 62

THE NEOTIA UNIVERSITY

For the fixed port form, the 8-bit port address is specified directly in the instruction. With this
form, any one of 256 possible ports can be addressed.

QUT 3BH, AL Copy the content of AL to port 3BH

OUT 2CH, AX Copy the content of AX to port 2CH

For variable port form of the OUT instruction, the content of AL or AX will be copied to the port
at an address contained in DX. Therefore, the DX register must be loaded with the desired port
address before this form of the OUT instruction is used.

MOV DX, OFFF8H Load desired port address in DX

OUT DX, AL Copy content of AL to port FFF8H

OUT DX, AX Copy content of AX to port FFF8H

The OUT instruction does not affect any flag.

PROGRAM:

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

MSG DB 10,13,ENTER A NUMBER = $
MSG1 DB 10,13,NUMBER IS EVEN $
MSG2 DB 10,13,NUMBER IS ODD $
DATA ENDS

CODE SEGMENT
START:

MOV BX,DATA
MOV DS,BX

LEA SI,MSG
CALL PRINT

MOV AH,01H
INT 21H

SAR AL,01
JCODD

LEA SI,MSG1
CALL PRINT
JMP TERMINATE
ODD:

LEA SI,MSG2
CALL PRINT

Computer OrganizationPage 63

THE NEOTIA UNIVERSITY

TERMINATE:

Computer OrganizationPage 64

THE NEOTIA UNIVERSITY

MOV AH,4CH
INT 21H

PRINT PROC
MOV DX,5I
MOV AH,09H
INT 21H

RET

PRINT ENDP

CODE ENDS
END START

¥ emulator even or odd.exe_ = O .
file math debug wiew external wvirtual devices wvirtualdrive help

a‘«m m»Ja»)

reload step back single step run

~

(=
Load

step delay ms: 0

- Tedisters - i Fu400:0200 FuB0: 8204

H L
wx [ne [2u m . 3
F4201: FF 255 RI | 1
ex [07 10 || £1555: 6D 2@5 = m
= [ee o || F42p3: 21 @33 ! * -
ox foo iu IR RERRE [BY + 8117 |
C B | FB2S L
P |@2o4 : + s
s [arin. ' [ex + 813,
5F |FFFA ‘ EE§ + g%%, i
EP]nmm + s
[BX SI1, .
sl [eetn | [BX I SId, i
Dl |6@8s : + .
FA4ZPE: 08 @A NI ADD [BX SI]
s [orta (||F429F: @@ 900 NI .. .|
&S it SCIEEn | suurce| reset I Al] vars | debug] stack,] flags |

Computer OrganizationPage 65

THE NEOTIA UNIVERSITY

&l emulator screen (20125 chars) = O *

IENTER A NUMBER
NUMBER IS EVEN

clear soreen H change font

Conclusion:-
In this way we executed assembly language program to check whether the number is odd
or even.

Computer OrganizationPage 66

THE NEOTIA UNIVERSITY

Experiment No.9
ASCIl number to packed BCD

Aim:- Write assembly language program to perform conversion from ASCH number to packed
BCD
Objective: To study the concept of ASCIl in Assembly Language programming.

To implement the instructions related to ASCIIl arithmetic.

Software: 8086 Emulator

Theory:

ASClI Arithmetic

AAA (ASCl ADJUST FOR ADDITION)

Numerical data coming into a computer from a terminal is usually in ASCII code. In this code, the
numbers O to 9 are represented by the ASCIl codes 30H to 39H. The 8086 allows you to add the
ASCIl codes for two decimal digits without masking off the “3” in the upper nibble of each. After
the addition, the AAA instruction is used to make sure the result is the correct unpacked BCD.
Let AL=0011 0101 (ASCII 5), and BL = 0011 1001 (ASCII 9)

ADD AL, BLAL = 0110 1110 (6EH, which is incorrect BCD)

AAA AL = 0000 0100 (unpacked BCD 4)

CF = 1 indicates answer is 14 decimal.

The AAA instruction works only on the AL register. The AAA instruction updates AF and CF; but
OF, PF, SFand ZF are left undefined.

AAS (ASCII ADJUST FOR SUBTRACTION)

Numerical data coming into a computer from a terminal is usually in an ASCII code. In this code
the numbers 0 to 9 are represented by the ASCIl codes 30H to 39H. The 8086 allows you to
subtract the ASCII codes for two decimal digits without masking the “3” in the upper nibble of
each. The AAS instruction is then used to make sure the result is the correct unpacked BCD.

Let AL = 00111001 (39H or ASCII 9), and BL = 00110101 (35H or ASCII 5)

SUB AL, BL AL = 00000100 (BCD 04), and CF=0
AAS AL = 00000100 (BCD 04), and CF = 0 (no borrow required)
Let AL=00110101 (35H or ASCII 5), and BL =00111001 (39H or ASCII 9)

SUB AL, BLAL=11111100(—4 in 2’s complement form), and CF =1

AAS AL = 00000100 (BCD 06), and CF =1 (borrow required)

The AAS instruction works only on the AL register. It updates ZF and CF; but OF, PF, SF, AF are |eft
undefined.

AAM (BCD ADIUST AFTER MULTIPLY)

Computer OrganizationPage 67

THE NEOTIA UNIVERSITY

Before you can multiply two ASCII digits, you must first mask the upper 4 bit of each. This leaves
unpacked BCD (one BCD digit per byte) in each byte. After the two unpacked BCD digits are
multiplied, the AAM instruction is used to adjust the product to two unpacked BCD digits in AX.

Computer OrganizationPage 68

THE NEOTIA UNIVERSITY

AAM works anly after the multiplication of two unpacked BCD bytes, and it works only the
operand in AL AAM updates PF, SF and ZF but AF; CF and OF are left undefined.

Let AL = 00000101 {unpacked BCD 5}, and BH = 00001001 {unpacked BCD 9)

MUL BH AL x BH: AX = 00000000 00101101 = 002DH

AAM AX = 00000100 00000101 = 0405H {unpacked BCD for 45;

AAD [BCD-TC-BINARY CONVERT BEFORE DIVISICN]

AAD converts two unpacked BCD digits in AH and AL to the equivalent binary numberin AL. This
adjustment must he made befare dividing the two unpacked BCD digits in AX by an unpacked
BCD byte. After the BCD divisian, AL will contain the unpacked BCD guotient and AH will contain
the unpacked BCD remainder. AAD updates PF, SF and ZF; AF, CF and OF are left undefined.

Let AX = 0607 {unpacked BCD for 67 decimal), and CH = 09H

AAD AX = 0043 (43H = 67 decimal)

DIV CH AL = 07; AH = 04, Flags undefined after DIV

If an attempt is made to divide by 0, the 8086 will generate a type 0 interrupt.

Program:-

MOV AX, 0000

MOV D5,AX

MOV AL, [1030H]

MOV BL,[1032H]

AND ALOFH

AND BL,0OFH

MOV CLO4H

ROR BL,CL

ADD ALBL

MOV [1034H],AL

INT

Chservation:-

W crulator: ASCI TO BCD.bin_ — O *
file math debug view extermal wvirtual devices wirtual drive help
= ‘ M 4l [. ! —
Load reload step back singlestep | i run....i| stepdelay ms: 0
egsters [e100:0011 0100:061A
s [00'fzs T@IGIT: B1 177 B <[MOV AX, 000@oh -
= [o8 [ro |[121012: MOV DS, AX |
@10132: MOV AL, L[O103Bh
e b
gfoeileg | || 21812 AND BL. @Fh
L5 |e100 @1al17: MOV CL, @4h
o | s Sl
55 |e100 %z A MOV [@1034h1 AIJ'
P [FFFE Q1B : Wﬂﬂ_
P [0000 ARReE '
s [owes || BiptE:
ol |oese R1a1F : ;
a os [oewn R1026: BIREE =}
ES a108

screen‘ 3-:|un:eJ reset‘ AL | ware J debugJ ztack J flags J

THE NEOTIA UNIVERSITY

[F' Random Access Memory

a160:8808 update & table

%%}
24
o0
37
%%}
%%)

%)
GG

ATaBPEA2>$¢g
Tie® Fodr=. EEEE
EEEEEEEEEEEEE

o A

Result:-
[1030H]=3
5
[1032H]=3
7
[1034H]=7
5

Conclusion:-

In this way we executed assembly language program to conversion from ASCIl number to

packed BCD.

Cemputer OrganizatienPage 70

THE NEOTIA UNIVERSITY

Experiment No.10

Calculate conversion of temperature

Aim:- Write assembly language program to calculate conversion of temperature

Objective: Describe the Logical Instructions.
To study and implement the concept of arrays in Assembly Language Programming,.

Software: 8086 Emulator

Theory:

LOGICAL INSTRUCTIONS

AND — AND Destination, Source

This instruction ANDs each bit in a source byte or word with the same numbered bit in a
destination byte or word. The result is put in the specified destination. The content of the
specified source is not changed.

The source can be an immediate number, the content of a register, or the content of a memory
location. The destination can be a register or a memory location. The source and the destination
cannot both be memory locations. CF and OF are both O after AND. PF, SF, and ZF are updated
by the AND instruction. AF is undefined. PF has meaning only for an 8-hit operand.

AND CX, [SI] AND word in DS at offset [SI] with word in CX register;

Result in CX register

AND BH, CL AND byte in CL with byte in BH; Result in BH

AND BX, OOFFH OOFFH Masks upper byte, leaves lower byte unchanged.

OR — OR Destination, Source

This instruction ORs each bit in a source byte or word with the same numbered bit in a
destination byte or word. The result is put in the specified destination. The content of the
specified source is not changed.

The source can be an immediate number, the content of a register, or the content of a memory
location. The destination can be a register or a memory location. The source and destination
cannot both be memory locations. CF and OF are both O after OR, PF, SF, and ZF are updated by
the OR instruction. AF is undefined. PF has meaning only for an 8-bit operand.

OR AH, CL CL ORed with AH, result in AH, CL not changed

OR BP, SI S| ORed with BP, result in BP, SI not changed OR

Sl, BP BP ORed with Sl, result in SI, BP not changed

OR BL, 80H BL ORed with immediate number 80H; sets MSBof BLto 1

XOR — XOR Destination, Source

Computer OrganizationPage 71

THE NEOTIA UNIVERSITY

This instruction Exclusive-ORs each bit in a source byte or word with the same numbered bitin a

destination byte or word. The result is put in the specified destination. The content of the
specified source is not changed.

The source can be an immediate number, the content of a register, or the content of a memory
location. The destination can be a register or a memory location. The source and destination

Computer OrganizationPage 72

THE NEOTIA UNIVERSITY

cannot both be memory locations. CF and OF are both O after XOR. PF, SF, and ZF are updated.
PF has meaning only for an 8-bit operand. AF is undefined.

XOR CL, BH Byte in BH exclusive-ORed with byte in CL

Result in CL. BH not changed.

XOR BP, DI Word in DI exclusive-ORed with word in BP.

Result in BP. DI not changed.

NOT — NOT Destination

The NOT instruction inverts each bit (forms the 1's complement) of a byte or word in the
specified destination. The destination can be a register or a memory location. This instruction
does not affect any flag.

NOT BX Complement content or BX register

NEG — NEG Destination
B This instruction replaces the number in a destination with its 2’s complement. The destination
[can be a register or a memory location. It gives the same result as the invert each bit and add
one algorithm. The NEG instruction updates AF, AF, PF, ZF, and OF
NEG AL Replace number in AL with its 2’s complement
NEG BX Replace number in BX with its 2’s complement

TEST — TEST Destination, Source

This instruction ANDs the byte / word in the specified source with the byte / word in the
specified destination. Flags are updated, but neither operand is changed. The test instruction is
often used to set flags before a Conditional jump instruction.

The source can be an immediate number, the content of a register, or the content of a memory
location. The destination can be a register or a memory location. The source and the destination
cannot both be memory locations. CF and OF are both 0’s after TEST. PF, SF and ZF will be
updated to show the results of the destination. AF is be undefined.

TEST AL, BH AND BH with AL. Noresult stored; Update PF, SF, ZF.

TEST CX, 0001H AND CX with immediate number 0001H;

No result stored; Update PF, SF, ZF

TEST BP, [BX][DI] AND word are offset [BX][DI] in DS with word in BP.
No result stored. Update PF, SF, and ZF

Program:-

DATA SEGMENT
T DB?
RES.DB 10 DUP ('S')
MSG1 DB "ENTER TEMPERATURE IN CELSIUS (ONLY IN 2 DIGITS) : "
MSG2 DB 10,13,"CONVERTED IS FAHRENHEIT (TEMPERATURE) : $"

DATA ENDS

Computer OrganizationPage 73

THE NEOTIA UNIVERSITY

CODE SEGMENT
ASSUME DS:DATA,CS:CODE
START:
MOV AX,DATA

Computer OrganizationPage 74

THE NEOTIA UNIVERSITY

MOV DS,AX

LEA DX,M5G1
MOV AH,9
INT 21H

MOV AH,1
INT 21H

SUB AL,30H
MOV AH,0

MOV BL,10
MUL BL
MOV BL,AL

MOV AH,1
INT 21H

SUB AL,30H
MOV AH,0
ADD AL,BL
MOV TAL

MOV DL,9
MUL DL

MOY BL,5
DIV BL
MOV AH,0

ADD AL,32

LEA SI,RES
CALL HEX2DEC

LEA DX,MSG2
MOV AH,S
INT 21H

LEA DX,RES
MOV AH,S
INT 21H

Computer OrganizationPage 75

THE NEOTIA UNIVERSITY

MOV AH,4CH
INT 21H
CODE ENDS

Computer OrganizationPage 76

THE NECTIA UNIVERSITY

HEX2DEC PROC NEAR
MOV CX,0
MOV BX,10

LOOPL: MOV DX,0
DIVEX
ADD
DL,30H
PUSH DX
INC CX
CMP AX,9
JG LOOP1

ADD AL,30H
MOV [SI],AL

LOOPZ: POP AX
INC3I
MOV [SI],AL
LOOP LOOP2
RET
HEX2DEC ENDP

END START

Chservation:-

emulator temp.exe_ o
file math debug view external virtual devices virtual drive help
J ql > 2
reload step back single step run
r 'BQ'S‘B' F400:68280 FL400:02 04
Fazoi: FF 255 Rl [INT 221h
o 'ﬁ’ﬁ F4202: CD 205 = -
o [o0 [e0 Cdzo3: 2L 0334 | [FADDTRXT S
) () +
- WF : ADD [BX + S
= F4206: @@ QoQ NI ADD [BX + S
P [e20s F4207: @@ 222 NI ADD [BX + §
‘ s [ore || F4208: @0 002 NI || ADD [BY + §
F4209: BB B0g NU | ADD [BX + S
5P [FFFA F420A: QB Q08 NI ADD [BX + S
] BF [ooe0 F420B: @@ Q0@ NI ADD [BX + S
F420C: @@ 223 NI ADD [BX + §
sl ‘_‘""33 F42@D: @@ Q08 NI ADD [BX + S
[TTT F420E: @@ 208 N ADD [BX + S
o [o7ie || F420F: 0@ 888 NI | ...

=
=~
=
=

ES

| SCTEEN] SDUI’CEI reset I

= b = = = = -
U T T | | [) | T |

‘ sars | debug‘ stack ‘ flags I

Computer OrganizationPage 77

THE NEOTIA UNIVERSITY

&k emulator screen (B0x25 chars) = O ¥

ICONVERTED IS FAHRENH

clear screen | change font

Conclusion:-
In this way we executed assembly language program to calculate conversion of
temperature.

Computer OrganizationPage 78

THE NEOTIA UNIVERSITY

Experiment No.11
Study of BIOS and DOS

Aim:- Study of BIOS and DOS

Objective: Describe the basic input output system interrupts.
To study disk operating system interrupts.

Theory:

BIOS interrupt calls are a facility that operating systems and application programs use to invoke
the facilities of the Basic Input/Output System on IBM PC compatible computers. Traditionally,
BIOS calls are mainly used by MS-DOS programs and some other software such as boot
loaders (including, mostly historically, relatively simple application software that boots directly
and runs without an operating system—especially game software). BIOS only runs in the real
address mode (Real Mode) of the x86 CPU, so programs that call BIOS either must also run in
real mode or must switch from protected mode to real mode before calling BIOS and then
switch back again. For this reason, modern operating systems that use the CPU in
Protected Mode generally do not use the BIOS to support system functions, although some of
them use the BIOS to probe and initialize hardware resources during their early stages of
booting.

_Purpose of BIOS calls

The BIOS also frees computer hardware designers (to the extent that programs are written to
use the BIOS exclusively) from being constrained to maintain exact hardware compatibility with
old systems when desighing new systems, in order to maintain compatibility with existing
software. In addition to giving access to hardware facilities, BIOS provides added facilities that
are implemented in the BIOS software.

Calling BIOS: BIOS software interrupts

Operating systems and other software communicates with the BIOS software, in order to
control the installed hardware, via software interrupts. A software interrupt is a specific variety
of the general concept of an interrupt. An interrupt is a mechanism by which the CPU can be
directed to stop executing the main-line program and immediately execute a special program,
called an Interrupt Service Routine (ISR).

BIOS interrupt calls can be thought of as a mechanism for passing messages between BIOS and
the operating system or other BIOS client software.

The BIOS software usually returns to the caller with an error code if not successful, or with a

status code and/or requested data if successful. The data itself can be as small as one bit or as
. ___|]

Computer OrganizationPage 79

THE NEOTIA UNIVERSITY

large as 65536 bytes of whole raw disk sectors (the maximum that will fit into one real-mode
memory segment). BIOS has been expanded and enhanced over the years many times by many
different corporate entities, and unfortunately the result of this evolution is that not all the BIOS
functions that can be called use consistent conventions for formatting and communicating data

Computer OrganizationPage 80

THE NEOTIA UNIVERSITY

or Tor reporting results. Sorme BIOS functions report detailed status information, while others
fmay not even report success or failure but just return silently, leaving the caller to assurne
success [or to test the outcome some other way). Sometimes it can also be difficult to
deterrninie whether or not a certain BIOS function call is supportad by the BIOS on a certain
cormnputer, or what the limits of a call's pararmetears are on that computer,

Invoking an interrupt

Imvoking an interrupt can be done using the INT x86 assermbly language instruction. For
exarnple, to print a character to the screen using BIOS interrupt Oxl10, the following x86
assarnbly language instructions could be executed:

mov ah, Ox0e ; function number = OEh : Display Character
mov al, '!" ; AL = code of character to display
int Ox10 ; coll INT 10h, BIOS video service

Intarrupt table
Main orticle: Interrupt vactor table

A list of cornmon BIOS interrupt classes can be found below. Note that sorme BIOSes {particularly
old ones) do not implerment all of thesa intarrupt classas.

BIOS also uses some intarrupts to relay hardware event interrupts to prograrms which choose to
receive tharm or to route messages for its own use. The table below includes only those BIOS
interrupts which are intended to be called by programs {using the "INT" assembly-language
softwareg interrupt instruction) to requast services or information.

Imterrupt types O to 1Fh are known as BIOS interrupts. This is because most of these service
routines are BIOS routines rasiding in the RO,

Interrupt Types O-7Intarrupt types 0-7 are resarved by Intel, with types 0-4 being predefined.
IBM uses typa 5 for print screen. Types 6and 7 are notused.

Interrupt O -- Divide Overflow

A type O interrupt is generated when a DIV or IDIY operation produces an overflow. This occurs
when the guotient can not fit in the destination register. The interrupt O routine displays the
rmassage "DIVIDE OVERFLOW" and returns control to DOS.

Interrupt 1 -- Single Step

Single-stepping is a usetul debugging tool to observe the behavior of a prograrm instruction by
instruction. A type 1 interrupt is generated when the Trap Flag {TF) is set. The I5R for a type 1
interrupt can be used to display relevant information about the state of the program. For
exarnple, the conterts of all registars can be displayed. To end single-stapping, the TF should be
clearad. Note that there are dedicated instructions for setting and clearing the TF.

Computer OrganizationPage 81

THE NEOTIA UNIVERSITY

Interrupt 2 -- Non-Maskable Interrupt
Interrupt 2 is the hardware interrupt that cannot be masked out by clearing the TF. The IBM PC
uses this interrupt to signal memory and 1/O parity errors that indicate bad chips.

Computer OrganizationPage 82

THE NEOTIA UNIVERSITY

Interrupt 3 -- Breakpoint

The INT 3 instruction is the only single-byte interrupt instruction (opcode: CCh); other interrupt
instructions are two-hyte instructions. Inserting a breakpoint in a program involves replacing the
program code byte by CCh while saving the program byte for later restoration to remove the
breakpoint. Inserting breakpoints is used by program debuggers.

Interrupt 4 -- Overflow

A type 4 interrupt is generated by the instruction INTO (interrupt if overflow) when the OF is
set. Programmers may write their own routines to handle unexpected overflows. Note that
executing the instruction INT 4 will invoke the ISR for this interrupt type unconditionally while
INTO invokes it conditionally on the OF. INTO is not used normally as the overflow condition is
usually detected and processed using the instructions JO and JNO.

Interrupt 5 -- Print Screen

The BIOS interrupt 5 routine sends the video screen information to the printer. An INT 5
instruction is generated by the keyboard interrupt routine (interrupt type 9) when the PrtSC
(print screen) key is pressed.

Interrupt Types 8h-Fh

The 8086 has only one pin, INTR pin, for maskable hardware interrupt signals. To allow more
devices to interrupt the 8086, IBM uses an interrupt controller, the Intel 8259 Programmable
Interrupt Controller chip, which can interface up to eight devices. Interrupt types 8h-Fh are
generated by hardware devices connected to the 8259 chip. The original version of the PC uses
only interrupts 8, 9, and Eh.

Interrupt 8 -- Timer

The IBM PC contains a timer circuit that generates an interrupt once every 54.92 milliseconds
(about 18.2 times per second). The BIOS interrupt 8 routine services the timer circuit. It uses the
timer signals (ticks) to keep track of the time of the day.

Interrupt 9 -- Keyboard

The interrupt 9 is generated by the keyboard each time a key is pressed or released. The BIOS
interrupt 9 routine reads a scan code and stores it in the keyboard buffer. In addition, it also
identifies special key combinations such ctrl-break. The keyboard buffer has the capacity to
store up to 15 keys. When the buffer is full, pressing a key causes the BIOS to beep, indicating
that the key stroke is lost,

The keyboard controller supplies the key identity by means of a scan code. The scan code of a
key is simply an identification number given to the key based on its location in the keyboard.
The scan code has no relation to the ASCIl code. The interrupt 9 routine receives the scan code
and generates the equivalent ASCII code, if there is one. Both the scan code and the ASClI code
are placed in the keyboard buffer.

Interrupt E -- Diskette Error

Computer OrganizationPage 83

THE NEOTIA UNIVERSITY

The BIOS interrupt Eh handles diskette errors.

Interrupt Types 10h-1Fh

Computer OrganizationPage 84

THE NEOTIA UNIVERSITY

The interrupt routines 10h-1Fh can be called by application programs to perform various 1/0
operations and status checking.

Interrupt 10h -- Video

The BIOS interrupt 10k routing is the video driver. Associated with each /O device. There is a
device controller or 1I/O controller that acts as a hardware interface hetween the processor and
the /O device. The device controller performs many of the low-level tasks specific to the 1I/O
device. This allows the CPU to interact with the device at higher level. For each device controller,
there is a software interface that provides a clean interface to access the device. This software
interface is called the device driver.

Interrupt 11h -- Equipment Check
The BIOS interrupt 11h routine returns the equipment configuration of the particular PC. The
return codeis placed in ragister AX.

Interrupt 12h -- Memory Size

The BIO5 interrupt 12h routing returns in register AX the amount of corventional memory a
computer has. Conventional mermory refers to memory circuits with addresses below 640
KByte. The unit for the return value is in Khytas.

Interrupt 13h -- Disk 1/0
Thea BIOS interrupt 13k routine is the disk driver. It allows application programs to do disk 1/0.

Interrupt 14h -- Communications
The BIOS interrupt 14k routing is the cormmunications driver that interacts with the serial ports.

Interrupt 15h -- Cassette
Thisinterrupt was used by the original PC for cassette interfaca.

Interrupt 16h -- Keyboard /O
The BIOS interrupt 16k routing is the keyboard driver. BIOS provides keyboard service routines
under INT 16H. We list here sorme exarnples.

To read a character frorm the keyboard, function & in AH is used as Tollows:

Function DOH -- Read a character from the keyboard
Input: AH=00H Returns:
if AL<>0 then
AL = ASCH code of the key entered AH = Scan code of
the key entered
if AL=0
AH = Scan code of the extended key entered

This BIOS function can be used to read a character frorm the keyboard. If the keyboard buffer is

Computer OrganizationPage 85

THE NEOTIA UNIVERSITY

empty, it waits for a character to be entered. The value returned in AL determines if the key
represents an ASCIl character or an extended key character. In both cases, the scan code is
placed in the AH register and the ASCIl and scan codes are removed from the keyboard buffer.

Computer OrganizationPage 86

THE NEOTIA UNIVERSITY

To check if the keyboard buffer is ernpty or not, we can use function 1 as follows:

Function 01H - Check keyboard buffer
Input: AH=01H
Returns: ZF= 1 if the keyboard buffer is empty
ZF=0 if there is at least one character available. In this case, the
ASCIHl and scan codes are placed in the AL
and AH registers as in function 00. The
codes, however, are not removed from the buffer.

Function 2 can be used to check keybhoard status with regard to shitt and toggle keys.

Function 02H — Check keyboard status
Input: AH=02H
Returns: AL= status of the shift and toggle keys

The following table indicates the bit assignrment for shift and toggle keys, A bit with a valug of 1
indicatas the prasence of a condition.

Ins lock switch is on
(Caps lock switch is on
?-Num' lock switzh is on
,:_.Scmll lock switch is on
;Alt key deprassad
: Ctrl key deprassed

Lett shift key depressed

Right shift kéy depressed

=T |w = v o [=

Interrupt 1 7h -- Printer 1/0
The BIOS interrupt 17k routine is the printer driver. The routine supports three functions: 0-2.

£ Function 0 writes a character to a printer; input values are AH=0, Al=character to be
printed, DX=printer nurmber (0=LPT1, 1=LPT2, 2=LFT3].
£ Function 1 initializes a printer port; input values are AH=1, D¥=printer number.

<> Function 2 gats printer status; input values are AH=2, DX= printer number.

For all functions the status is returned in AH. The following table shows the meaning of the bits

returmad in AH:

7 =1 printar not busy
] =1 print acknowledge

Computer OrganizationPage 87

THE NEOTIA UNIVERSITY

5 = 1 out of paper

fnY

=1 printer online
3 =1 1/O error

Computer OrganizationPage 88

THE NEOTIA UNIVERSITY

2 = 1 not used
1 =1 not used
0 =1 printer timed-out

Next, we show an example for printing character 0 on the printer. Because printers contain
huffers for data, the O will not be printed until a carriage return or line feed character is sent.

MOV AH, O ; function 0, print character
MOV AL, 'O ; character to be printed in AL
MOV DX, O ; Printer O (LPT1)

INT17H : AH contains return code
MOV AH, O ; function O, print character
MOV AL, OAH ; line feed

INT17H

Interrupt 18h -- BASIC
The BIOS interrupt 18h routine transfers control to ROM BASIC.

Interrupt 19h -- Bootstrap
The BIOS interrupt 19h routine reboots the system.

Interrupt 1Ah -- Time of Day
The BIOS interrupt 1Ah routine allows a program to get and set the timer tick count.

Interrupt 1Bh -- Ctrl Break

This interrupt is called by the INT 9 routine when the Ctrl-break key is pressed. The BIOS
interrupt 1Bh routine contains only an IRET instruction. Users may write their own routine to
handle the Ctrl-break key.

Interrupt 1Ch -- Timer Tick

Interrupt 1Ch is called by the INT 8 routine each time the timer circuit interrupts. The BIOS
interrupt 1Ch routine contains only an IRET instruction. Users may write their own service
routine to perform timing operations.

Interrupts 1Dh-1Fh

These interrupt vectors point to data instead of instructions. The interrupt 1Dh, 1Eh, and 1Fh
point to video initialization parameters, diskette parameters, and video graphics characters,
respectively.

Computer OrganizationPage 89

THE NEOTIA UNIVERSITY

Application program
/ /

DOS support
N

BIOS support

/ \ W

Input/Output devices

DOS Interrupts

MES-DOS provides many common services through INT 21h. Entire books have been written
ahout the variety of functions availahle; | will just list the most basic ones for consale input and
output here.

Input a character.
MOY AH, O1h
INT 21h

After the interrupt, AL contains the ASCll code of the input character. The character is
echoed {displayed on the screen). Use function code 8instead of 1 for no echo.

« [nput a string.

. SECTION .data

& Buffer DB BILIFSIZE ;BUFSIZE is max number of chars to read, <= 255
a RESE BLUFSIZE+ 1

-

SECTION text
MOY DX, Buffer
MOV AH, 0Ah
INT 21h

After the interrupt, BYTE [Buffer + 1] will contain the number of characters read, and the
characters themselves will start at Buffer + 2. The characters will be terminated by a
carrisge return (ASAI code 13), although this will not be included in the count.

Computer OrganizationPage 90

THE NEOTIA UNIVERSITY

e Output a character.
e MOV DL, ...
. MOV AH, 02h

Computer OrganizationPage 91

THE NEOTIA UNIVERSITY

INT 21h

Load the desired character into DL, then call the interrupt with function code 2 in AH.

Qutput a string.
MOV DX, ..
MOV AH, 09h
INT 21h

Load the address of a 'S$'-terminated string into DX, then call the interrupt with function
code 9 in AH.

Exit.
MOV AL, ...
MOV AH, 4Ch
INT 21h

Load the return code {0 for normal exit, non-zero for error) into AL, then call the
interrupt with function code 4Ch in AH. This is the proper DOS exit routine; however, if
you are running your program with DEBUG, this will exit DEBUG. An alternative is to go
behind DOS's back and use the BIOS routine accessed by INT 20h, which will return
control to the DEBUG prompt when executed.

Conclusion:- In this we studied BIOS and DOS interrupts

Computer OrganizationPage 92

THE NEOTIA UNIVERSITY

Experiment No.12
Study of TSR

Aim:- Study of TSR

Objective: To study Keyboard interrupt (int 9h), Control-C interrupt (int 23h), Control-break
interrupt (int 1bh), Critical error interrupt {int 24h}, BIOS disk interrupt {int 124 A to Z of C 13h),
Timer interrupt (int 1ch) and DOS Idle interrupt (int 28h) using TSR

Theory:

TSR or “Terminate and Stay Resident” Programming is one of the interesting topics in
DOS Programming. TSR programs are the one which seems to terminate, but remains resident
in memory. So the resident program can be invoked at any time. Few TSR programs are written
with the characteristic of TCR (Terminate Continue Running) i.e., TSR program seems to
terminate, but continues to run in the background. TSR Programming is supposed to be an easy
one, if you know the DOS internals.

TSR Programming concept in a simpler manner DOS’s non-reentrancy Problem If a function
cah be called before it is finished, it is called reentrant. Unfortunately, DOS functions are non-
reentrant. That is, we should not call a DOS function when it executes the same. Now, our
intuition suggests us to avoid the DOS functions in TSR programs! 27.2 Switching Programs As
we know, DOS is not a multitasking operating system. So DOS is not meant for running two or
more programs simultaneously! One of the major problems we face in TSR programming is that
DOS’s nature of switching programs. DOS handles switching programs, by simply saving the
swapped- out program’s complete register set and replacing it with the swapped-in program’s
registers. In DOS, if a program is put to sleep its registers are stored in an area called TCB (Task
Control Block). We must finish one process before another is undertaken. The main idea behind
it is that, whenever we switch between programs, DOS switches our program’s stack to its own
internal set. And whatever that is pushed must be fully popped. For example, assume that we
have a process currently running called previous-process, and we initiate another process in the
meantime called current-process. In this case, the current-process will work fine, but when the
previous-process just gets finished, it would find its stack data has been trashed by current
process.

DOS Busy Flag From the above discussion, we understand that before popping up our TSR
program, we must check whether DOS is currently executing an internal routine (i.e., busy) or
not. Surprisingly DOS also checks its status using a flag called “DOS Busy Flag”. This “DOS Busy
Flag” feature is undocumented and some programmers refer this flag as “DOS Critical Flag”. We
can also use this flag in our TSR program to check whether DOS is busy or not. For that, we have
to use undocumented DOS function 34h.BIOS Functions As BIOS functions are reentrant, some
programmers use BIOS functions in TSR programs. But professional programmers don’t use BIOS
functions, as the implementation of BIOS functions is quite different from machine to machine.
In other words, BIOS is not compatible and there is no guarantee for its reentrancy. So for

Computer OrganizationPage 93

THE NEOTIA UNIVERSITY

professional TSR programming, avoid BIOS functions too! Popping up TSR TSR programs can be
made to reside in memory with the keep() function. Then how does our TSR program
understand, it is being requested by user? In other words, when to popup our TSR program? For
that, we have

Computer OrganizationPage 94

THE NEOTIA UNIVERSITY

to capture few interrupts. We have already seen that interrupt routines will be called whenever
an interruptis been generated. So if we replace the existing interrupt routine with our routine,
TSR programmers capture Keyboard interrupt (int 9h), Control-C interrupt (int 23h),
Control-break interrupt (int 1bh), Critical error interrupt (int 24h), BIOS disk interrupt {int 124 A
to Z of C 13h), Timer interrupt (int 1ch) and DOS Idle interrupt (int 28h). Indian TSR
programmers often use int 8h as Timer interrupt. But other international TSR programmers use
int 1ch as Timer interrupt. The idea is that we have to block Control-C interrupt, Control-break
interrupt and Critical error interrupt. Otherwise, there is a chance that the control will pass onto
another program when our TSR program is in action. And it will spoil everything! We must also
monitor other interrupts—Keyboard interrupt, BIOS disk interrupt, Timer interrupt and DOS Idle
interrupt, and we have to chain them. | hope by looking at the figure, you can understand the
concept better. 27.6 IBM’s Interrupt-Sharing Protocol Almost all TSR utilities came with the
property of unloading itself from the memory. But in order to unload the TSR, it must be the last
TSR loaded. For example, if we run TSR utilities namely “X” and “Y”, we can unload only the last
TSR loaded i.e., “Y”. The problem here is that of sharing of interrupts by TSR programs. IBM has
suggested a protocol for sharing system interrupts. Even though, this protocol is meant for
sharing hardware interrupts, it can be used for software interrupts too. It is especially useful for
unloading TSR programs from memory, irrespective of its loading sequence. That is, if we follow
this protocol standard, we can unload any TSR at any time! So, in order to unload any TSR at any
time, all the TSR programs must use this protocol. But unfortunately, TSR programmers don’t
use this standard. If you are very particular to know more about this protocol, checkout the
Intshare.doc file found on CD.
Rules for TSR Programming
Itis wise to consider the following rules, when you programming TSR:
1. Avoid DOS functions. If possible, avoid BIOS functions too!

2. When DOS busy flag is non-zero, DOS is executing interrupt 21h function. So we must
wait and watch DOS busy flag.
3 When DOS is busy waiting for console input, we can disturb DOS regardless of the DOS

busy flag setting. So you should watch interrupt 28h.
4. Use “signature” mechanism to check whether the TSR is already loaded or not. And so prevent

multiple copies.

5. Our TSR program must use its own stack, and not that of the running process.

6. Other TSR programs might be chained to interrupts. So we must also chain any interrupt
vector that our program needs.

7. TSR programs should be compiled in Small memory model.

8. However you may need to compile in compact, large or huge memory model if you use file
operations with get data() and set data() functions.

9. TSR programs should be compiled with stack checking turned off.

Conclusion:- In this way we studied TSR.

Computer OrganizationPage 95

THE NEOTIA UNIVERSITY

3.Quiz on the subject:-

Explain architecture of 8086.

Write assembly language program to perform 8 bit addition.
Explain about flag register.

Write assembly language program to perform 16 bit addition.
Explain about general purpose register.

What is AX,BX,CX,DX?

What is EAX,EBX,ECX,EDX?

Write assembly language program to perform 8 bit subtraction.

o W o B W B

What Is RAX,RBX,RDX,RCX?

(Y
o

. Write assembly language program to perform 16 bit subtraction.

=
e

. What will stands for A IN AX,B IN BX,C IN CX,D IN DX IN 8086 .

[
"]

. Write assembly language program to perform 8 bit multiplication.

=
W

. What are different data transfer instructions?

[
B

. Write assembly language program to perform 16 bit multiplication.

[
o

. Which is clock generator series is used fro 808a.

[y
(=2]

. Write assembly language program to perform 8 bit division.

(=Y
iq

. What is bus?

[
oo

. Write assembly language program to perform 16 bit division.

=
o

. Tell me different types of buses are used in 80867

]
o

. What is advantages of microprocessor?

P
e

. Where it is situated in Computer?

Computer OrganizationPage 96

THE NEOTIA UNIVERSITY

4. Conduction of Viva-Voce Examinations:

Teacher should conduct oral exams of the students with full preparation.
Normally, the objective questions with guess are to be avoided. To make it
meaningful, the questions should be such that depth of the students in the
subject is tested. Oral examinations are to be conducted in cordial environment
amongst the teachers taking the examination. Teachers taking such examinations
should not have ill thoughts about each other and courtesies should be offered to
each other in case of difference of opinion, which should be critically suppressed
in front of the students.

5. Evaluation and marking system:

Basic honesty in the evaluation and marking system is absolutely essential and in
the process impartial nature of the evaluator is required in the examination
system to become. It is a primary responsibility of the teacher to see that right
students who are really putting up lot of hard work with right kind of intelligence
are correctly awarded.

The marking patterns should be justifiable to the students without any ambiguity
and teacher should see that students are faced with just circumstances.

Computer OrganizationPage 97

