THE NEOTIA UNIVERSITY

DATABASE MANAGEMENT SYSTEM LAB

WORK INSTRUCTION

ASSIGNMENT NO:01

EXPERIMENT NAME:

For the given ODI| database perform the following manipulations:

MATCH (match_id, team1, team2, ground, mdate, winner) {primary key match_id}
PLAYER (p_id, Iname, fname, country, yborn, bplace, ftest) {primary key p_id}
BATTING (match_id, p_id, mts, order, out_type, fow, nruns, nballs, fours, sixes) {primary key

match_id, p_id}
BOWLING (match_id, p_id, novers, maidens, nruns, nwickets) {primary key match_id, p_id}

a)

b)
c)
d)
e)

f)

g)
h)
i)
)
k)
1)

OBJECTIVE:

PRINCIPLE:

a)

Write appropriate DDL statements to create the above database with integrity
constraints.

Create a table COUNTRY with ¢_id, ¢_name.

Add c_id as PRIMARY KEY for COUNTRY table.

Drop the table COUNTRY.

Write appropriate DML statements to insert values in all the tables under the above
database.

Add a new column to BATTING table.

Delete a column fram BATTING table.

Change any column name of a table.

Get the match id which was played on 27" August, 2008 at Colombo.

Get all match records as the column ‘mdate” will be shown as “match_date”.

Find the player id, first name and last name of all players.

Insert a new player Michael Clarke with player id 200311 in PLAYER table.

Creating, altering and dropping tables with integrity constraints.

CREATE TABLE match {match_id NUMBER(10) PRIMARY KEY, team1 VARCHAR(15),
team2 VARCHAR(15), ground VARCHAR(15), mdate DATE, winner VARCHAR(15));
CREATE TABLE player (p_id NUMBER(10) PRIMARY KEY, Iname YARCHAR(15), fname
VARCHAR(15), country VARCHAR(15), yborn NUMBER(4), bplace VARCHAR(15), ftest
NUMBER(3));

CREATE TABLE batting (match_id NUMBER(10), p_id NUMBER{10), mts NUMBER(3),
order NUMBER({2), out_type CHAR(3), fow NUMBER(4), nruns NUMBER(3), nballs

b)
¢)
d)
€)

f)
g)
h)
)

k)

THE NEOTIA UNIVERSITY

NUMBER(3), fours NUMBER(2), sixes NUMBER(2), FOREIGN KEY(match_id)
REFERENCES match{match_id), FOREIGN KEY(p_id) REFERENCES player(p_id}};
CREATE TABLE bowling (match_id NUMBER(10), p_id NUMBER{10), novers
NUMBER(2), maidens NUMBER(2), nruns NUMBER(3), nwickets NUMBER(2)},
FOREIGN KEY(match_id) REFERENCES match{match_id), FOREIGN KEY(p_id)
REFERENCES player{p_id));

CREATE TABLE country (c_id NUMBER(10), ¢_name VARCHAR{20}));

ALTER TABLE country ADD PRIMARY KEY(c_id);

DROP TABLE country;

INSERT INTO match VALUES (2324, ‘Pakistan’, ‘India’, ‘Peshawar’, 06-02-2006,
‘Pakistan’);

ALTER TABLE batting ADD COLUMN not_out INTEGER;

ALTER TABLE batting DROP COLUMN not_out;

SELECT team1 AS hometown FROM match;

SELECT match_id FROM match WHERE mdate = 27-08-2008 AND ground =
‘Colombo’;

SELECT match_id, teaml, team2, ground, mdate AS match_date, winner FROM
match;

SELECT p_id, fnrame, Iname FROM player;

INSERT INTO player (p_id, Iname, fname, country, yborn, bplace, ftest) VALUES
(200311, “‘Clarke’, ‘Michael’, NULL, NULL, NULL, NULL);

INSERT INTO player VALUES (200311, ‘Clarke’, “Michael’, NULL, NULL, NULL, NULL});

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 02

EXPERIMENT NAME:

For the given ODI database perform the following manipulations:

MATCH (match_id, team1, team2, ground, mdate, winner) {primary key match_id}
PLAYER (p_id, Iname, fname, country, yborn, bplace, ftest) {primary key p_id}
BATTING (match_id, p_id, mts, order, out_type, fow, nruns, nballs, fours, sixes) {primary key

match_id, p_id}
BOWLING (match_id, p_id, novers, maidens, nruns, nwickets) {primary key match_id, p_id}

a)
b)
c)
d)

e)

f)
g)

h)

)
k)

OBJECTIVE:

Find all the information about players who are from ‘INDIA" and was born after
1980.

Find details of matches that have been played in ‘AUSTRALIA".

List the matches played in which INDIA or ENGLAND was team1.

Find ids of all players those have bowled in an ODI match.

Find names of teams and grounds where India has played an OD| match outside
India.

Find ids of all players that batted in match no 2755.

Find the player ids of players who have made a century in each of the ODI
matches 2755 and 2689.

Find the player ids of those players whose date of first test match (FTEST) is not
given in the database.

Modify the bplace and ftest of player id 200311 to Sydney and 28 respectively.
Delete match id 2689 from MATCH table.

Delete bowling records of Brian Lara.

Retrieving and modifying data from a database.

PRINCIPLE:
a)
b)
¢}
d)
€)
f)
g)

h)
i)
)
k)

SELECT * FROM player WHERE country = ‘INDIA” AND yborn> 1980;

SELECT * FROM match WHERE team1 = ‘AUSTRALIA’;

SELECT * FROM match WHERE team1 = ‘INDIA’ OR team1 = 'ENGLAND/;

SELECT DISTINCT (p_id) FROM bowling;

SELECT DISTINCT (team1, ground) FROM match WHERE team2 = 'INDIA;

SELECT p_id FROM batting WHERE match_id = 2755’;

SELECT p_id FROM batting bl, batting b2 WHERE bl.match_id = ‘2755 AND
b2.match_id =2689" AND bl.nruns > 99 AND b2.nruns > 99;

SELECT p_id FROM player WHERE ftest IS NULL;

UPDATE player SET bplace = ‘Sydney’, ftest = 28" WHERE p_id = 200311;

DELETE FROM match WHERE match_id = '2689’;

DELETE FROM bowling WHERE p_id = (SELECT p_id FROM player WHERE Iname =
‘Lara” AND fname = ‘Brian’);

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 03

EXPERIMENT NAME:

For the given ODI database perform the following manipulations:

MATCH (match_id, team1, team2, ground, mdate, winner) {primary key match_id}
PLAYER (p_id, Iname, fname, country, yborn, bplace, ftest) {primary key p_id}
BATTING (match_id, p_id, mts, order, out_type, fow, nruns, nballs, fours, sixes) {primary key

match_id, p_id}
BOWLING (match_id, p_id, novers, maidens, nruns, nwickets) {primary key match_id, p_id}

OBJECTIVE:

PRINCIPLE:

a)

b)
¢}
d)
e)
f)

Display the sorted list of ground names in ascending & descending order where
AUSTRALIA has played as team1.

Find the name of all players whose last name starts with ‘s, third letter is ‘n’".

Find match ids of those matches in which ‘Tendulkar’ batted.

Find the match details of those matches in which ‘Dhoni’ has batted.

Find the match ids of matches in which Sachin Tendulkar has played.

Find ids and scores of players who scored less than 75 but more than 50 in
Colombo.

Retrieving data from database using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and
HAVING clause.

a)

b)

c)

)

f)

SELECT ground FROM match WHERE team1 = ‘AUSTRALIA” ORDER BY ground;
SELECT ground FROM match WHERE teaml = ‘AUSTRALIA" ORDER BY ground
DESG;

SELECT fname, Iname FROM player WHERE Iname LIKE “s_n%";

SELECT match_id FROM batting WHERE p_id IN (SELECT p_id FROM player
WHERE fname = ‘Tendulkar’);

SELECT match_id FROM batting b, player p WHERE b.p_id = p.p_id AND fname =
Tendulkar’;

SELECT * FROM match WHERE match_id IN (SELECT match_id FROM batting
WHERE p_id IN {SELECT p_id FROM player WHERE Iname = ‘Dhoni’});

SELECT * FROM match m, batting b, player p WHERE m.match_id = b.match_id
AND p.p_id =b.p_id AND Iname = ‘Dhoni’;

SELECT match_id FROM batting b, (SELECT p_id FROM player WHERE fname like
‘Sachin” AND Iname like ‘Tendulkar’) st WHERE b.p_id = st.p_id;

SELECT p_id, nruns FROM batting WHERE nruns BETWEEN 51 AND 74 AND
match_id IN (SELECT match_id FROM match WHERE ground = ‘Colombo’);

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 04

EXPERIMENT NAME:

For the given ODI database perform the following manipulations:

MATCH (match_id, team1, team2, ground, mdate, winner) {primary key match_id}
PLAYER (p_id, Iname, fname, country, yborn, bplace, ftest) {primary key p_id}
BATTING (match_id, p_id, mts, order, out_type, fow, nruns, nballs, fours, sixes) {primary key

match_id, p_id}
BOWLING (match_id, p_id, novers, maidens, nruns, nwickets) {primary key match_id, p_id}

a)
b)

¢}
d)
e)
f)
g)

OBJECTIVE:

Find the number of players that bowled in the ODI match 2689.

Find the average batting score of all the players that batted in the ODI match
2689.

Find the youngest player in ODI database.

Find the number of players in the QDI database from each country.

Find the batting average of each player.

Find the batting average of each player from India along with their first name.
Find the average scores for each player when playing in Australia.

Use of scalar and aggregate functions.

PRINCIPLE:

d)
e)
f)

g)

SELECT COUNT(*) AS nbowlers FROM bowling WHERE match_id = 2689’;

SELECT AVG(nruns) AS avgruns_2689 FROM batting WHERE match_id = 2689’;
SELECT Iname AS young player FROM player WHERE yborn = (SELECT
MAX(yborn) FROM player);

SELECT country, COUNT(*) AS nplayers FROM player GROUP BY country;

SELECT p_id, AVG{nruns) AS average FROM batting GROUP BY p_id;

SELECT fname, AVG({nruns) AS average FROM player p, batting b WHERE p.p_id=
b.p_id AND country = ‘India’ GROUP BY fname;

SELECT p_id AS playerid, AVG(nruns) AS average FROM batting WHERE match_id
IN (SELECT match_id FROM match WHERE team1 = ‘Australia’) GROUP BY p_id;

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 05

EXPERIMENT NAME:

For the given BOOK CLUB database perform the following manipulations:

AUTHOR (a_id, name, city, country) {primary key a_id}

CATALOG (b_id, title, a_id, p_id, c_id, year, price} {primary key b_id}

PUBLISHER {p_id, name, city, country) {primary key p_id}

MEMBER (m_id, name, address, city, state, pin, phone, email} {primary key m_id}
ORDER_SUMMARY (o_id, m_id, order_date, amount, order_status) {primary key o_id}
CATEGORY (c_id, description) {primary key ¢_id}

ORDER_DETAILS {0 _id, b_id, quantity) {foreign key o_id, b_id}

a)
b)

c)

d)

e)
f)

g)
h)
i)
i
k)
1)

Get the title and publisher names of all books. (EQUI JOIN])

Get the title and publisher names of all books that are priced above 1000.
(NON-EQUI JOIN / GREATER-THAN JOIN])

Get the title, author name, country and price of all the books with India-based
authors and price less than 500. (NON_EQUI JOIN / LESS_THAN JOIN)

Get the details of all the books with their categorical descriptions that are priced
above 1000. (NATURAL IOIN)

Find out the titles that have the same price. (SELF JOIN)

Get the title, author name, publisher name and category name of all books that
are published after 2008.

Get the details of order which was ordered by a member. (INNER JOIN])

By a SQL statement, show how LEFT OUTER JOIN works.

By a SQL statement, show how RIGHT OUTER JOIN works.

By a SQL statement, show how FULL OUTER JOIN works.

By a SQL statement, show how CARTESIAN PRODUCT works.

Get the details of all authors and publishers in India ordered by name.

Retrieving data from a database using Equi, Non Equi , Outer and Self Join.

OBJECTIVE:
PRINCIPLE:
a)
b)
¢)
d)

SELECT c.title, p.name FROM catalog c, publisher p WHERE c.p_id = p.p_id;
SELECT c.title, p.name FROM catalog ¢, publisher p WHERE c.p_id = p.p_id AND
c.price> 1000;

SELECT c.title, a.name, a.country, c.price FROM author a, catalog ¢ WHERE c.a_id
=a.a_id AND a.country = ‘India’ AND c.price< 500;

SELECT cl.b_id, cltitle, cl.a_id, cl.p_id, cl.c_id, cl.year, cl.price, cg.description
FROM catalog cl, category cg WHERE cl.c_id = cg.c_id AND cl.price> 1000;

e)

f)

g)

h)

)

k)

THE NEOTIA UNIVERSITY

SELECT DISTINCT cl.title, c1.price FROM catalog c1, catalog ¢2 WHERE c1.price =
c2.price AND c1.b_id <>c2.b_id ORDER BY c1.price;

SELECT cl.title, a.name, p.name, cg.description FROM catalog cl, author a,
publisher p, category cg WHERE cl.a_id =a.a_id AND cl.p_id = p.p_id AND cl.c_id
=cg.c_id AND cl.year>2008;

SELECT m.name, os.0_id, os.order _date, os.amount, os.order status FROM
member m, order_summaryos WHERE m.m_id =os.m_id;

SELECT m.name, os.0 id, os.amount FROM member LEFT OUTER JOIN
order_summary ON m.m_id = os.m_id;

SELECT m.name, o0s.0_id, os.amount FROM member RIGHT QOUTER JOIN
order_summary ON m.m_id = os.m_id;

SELECT m.name, o0s.0 id, os.amount FROM member FULL OUTER JOIN
order_summary ON m.m_id = os.m_id;

SELECT catalog.*, author.* FROM catalog, author;

SELECT name, city, country FROM author WHERE country = ‘India” UNION SELECT
name, city, country FROM publisher WHERE country = ‘India” ORDER BY 1;

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 06

EXPERIMENT NAME:

For the given ODI database perform the following manipulations:

MATCH {match_id, team1, team2, ground, mdate, winner) {primary key match_id}

PLAYER {p_id, Iname, fnrame, country, yborn, bplace, ftest) {primary key p_id}

BATTING (match_id, p_id, mts, order, out_type, fow, nruns, nballs, fours, sixes) {primary key
match_id, p_id}

BOWLING (match_id, p_id, novers, maidens, nruns, nwickets) {primary key match_id, p_id}

a)

b)
c)
d)
€)
f)
8)

OBJECTIVE:

Find player ids of players who have scored more than 30 in every ODI match that
they have batted.

List the attributes of BATTING separated by comma.

Find match ids of those matches in which ‘Lee’ bowled.

Find ids of players that have both bowled and batted in the ODI match 2689,

Find ids of players that have either bowled or batted in the ODI match 2689.

Find ids of players that have batted in match 2689 but have not bowled.

Find the senior player in ODI database.

Using sub queries, rowid and rownum for retrieving data.

PRINCIPLE:

b)

c)

d)

e)

f)

g)

SELECT p_id AS playerid FROM batting b1 WHERE NOT EXISTS (SELECT * FROM
batting b2 WHERE bl.p_id = b2.p_id AND nruns<30);

SELECT match_id | |*/|| p_id ||"/|| mts ||’ | order||’/|| out_type | |"|| fow
[177]] nruns [7]] nballs |||] fours ||’/ || sixes FROM batting;

SELECT b.match_id FROM player p, bowling b WHEREb.p id = p.p_id AND
p.Iname = ‘Lee’;

SELECT p_idFROM batting WHERE match_id = 2689 AND p_id IN (SELECT p_id
FROM bowling WHERE match_id = 2689’);

SELECT p_id FROM batting WHERE match_id = 2689’ INTERSECT (SELECT p_id
FROM bowling WHERE match_id = 2689’);

SELECT p_id FROM batting WHERE match_id = '2689" UNION (SELECT p_id FROM
bowling WHERE match_id = 2689’);

SELECT p_id FROM batting WHERE match_id = “2689" AND p_id NOT IN {SELECT
p_id FROM bowling WHERE match_id = '2689’);

SELECT p_id FROM batting WHERE match_id = “2689" EXCEPT (SELECT p_id FROM
bowling WHERE match_id = 2689’);

SELECT Iname AS senior player FROM player WHERE yborn = (SELECT
MIN{yborn) FROM player);

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 07

EXPERIMENT NAME:
For the given ODI database perform the following manipulations:

MATCH {match_id, team1, team2, ground, mdate, winner) {primary key match_id}
PLAYER (p_id, Iname, fname, country, yborn, bplace, ftest) {primary key p_id}
BATTING (match_id, p_id, mts, order, out_type, fow, nruns, nballs, fours, sixes) {primary key

match_id, p_id}
BOWLING (match_id, p_id, novers, maidens, nruns, nwickets) {primary key match_id, p_id}

a)

b)
c)
d)

e)

f)

g)
h)

)

OBJECTIVE:

Create a VIEW having p_id, fname as firstname, Iname as lastname, country,
novers, nwickets where match_id = 2755.

Find the name of players that have taken 2wickets or more in ODI match 2755.
Create a VIEW having match_id, team1, team?2, ground and mdate.

Insert data “India” as teaml, “Auatralia” as team2, “Mohali” as ground with
match_id 290782 into this view.

Update “290782(match is)’s” ground to “Eden Gardens” in the created view.
Delete the record of 290782 from the view.

Drop the created views.

Create an index on table PLAYER by taking p_id, Iname, fname, country {in
descending order), yborn.

Create an index on table MATCH by taking match_id, team1, team2, mdate (in
descending order), ground.

Delete one of the created indexes.

Use of views, indexes and sequences.

PRINCIPLE:
a)

b)

d)
e)
f)

g)
h)

)

CREATE VIEW M2755 AS SELECT p_id, fnrame ‘firstname’, Iname ‘lastname’,
country, novers, nwickets FROM player p, bowling b WHERE p.p_id =b.p_id AND
b.match_id = 2755;

SELECT fname, Iname FROM M2755 WHERE nwickets = 2;

CREATE VIEW AB23 AS SELECT match_id, teaml, team2, ground, mdate FROM
match;

INSERT INTO AB23 VALUES (290782, ‘India’, ‘Australia’, ‘"Mohali’, NULL};

UPDATE AB23 SET ground = ‘Eden Gardens” WHERE match_id = 290782;

DELETE FROM M2689 WHERE p_id = '290782';

DROP VIEW M2689;

CREATE UNIQUE INDEX xyz ON player (p_id, Iname, fname, country DESC, yborn};
CREATE UNIQUE INDEX abc ON match (match_id, teaml, team2, mdate DESC,
ground);

DROP INDEX abc;

THE NEOTIA UNIVERSITY

SSIGNMENT NO: 08

EXPERIMENT NAME:

For the given ODI database perform the following manipulations:

MATCH (match_id, team1, team2, ground, mdate, winner) {primary key match_id}
PLAYER (p_id, Iname, fname, country, yborn, bplace, ftest) {primary key p_id}
BATTING (match_id, p_id, mts, order, out_type, fow, nruns, nballs, fours, sixes) {primary key

match_id, p_id}

OBJECTIVE:

PRINCIPLE:

k)
1)

m)

n)
0)
p)
q)
r)
s)
t)
u)

Grant the SELECT authority on the MATCH table to all users.

Grant the SELECT, DELETE & UPDATE authority on PLAYER table to user ‘ALEX.
Grant the SELECT, DELETE & UPDATE authority with the capability to grant those
privileges to other users on PLAYER table to user ‘ALEX".

Grant ALL privileges on MATCH table to user ‘ROY".

Give the system privileges for creating tables and views to ‘ROY’.

Grant the UPDATE authority on the FOURS column of the BATTING to user ‘ROY".
Revoke the system privileges for creating tables from ‘ROY".

Revoke the SELECT privilege on PLAYER table from ‘ALEX".

Revoke the UPDATE privilege on PLAYER table from all users.

Remove ALL privileges on MATCH table from user ‘ROY".

Remove DELETE and UPDATE authority on the COUNTRY & YBORN columns of
the PLAYER table from user ‘ALEX".

Giving privileges to database users using GRANT & REVOKE commands.

GRANT SELECT ON match TO public;

GRANT SELECT, DELETE, UPDATE ON player TO alex;

GRANT SELECT, DELETE, UPDATE ON player TO alex WITH GRANT OPTION;
GRANT ALL ON match TO roy;

GRANT CREATE TABLE, CREATE VIEW TO roy;

GRANT UPDATE (fours) ON batting TO roy;

REVOKE CREATE TABLE FROM roy;

REVOKE SELECT ON player FROM alex;

REVOKE UPDATE ON player FROM public;

REVOKE ALL ON match FROM roy;

REVOKE DELETE, UPDATE (country, yborn) ON player FROM alex;

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 09

EXPERIMENT NAME:

1) Write a PL / SQL code block to calculate the area of a circle for a value of radius varying from
3 to 7. Store the radius and the corresponding values of calculated area in an empty table
named AREAS with radius and area as attributes.

2) Write PL / SQL code to calculate sum of digits of a number.

3) Write PL/SQL code to calculate sum of natural series.

4) Write PL / SQL code for inverting a number 8975 to 5798.

OBJECTIVE:
Perform coding in PL/SQL, using output from server.

PRINCIPLE:

1) CREATE TABLE areas (radius NUMBER(5), area NUMBER(14, 2)};
SET SERVEROUTPUT ON,;
DECLARE
piconstant number(4, 2) ;= 3.14 ;
radius number(5);
area number(14, 2);

BEGIN
radius:= .3;
WHILE RADIUS =7
LOOP
area :=pi * power(radius, 2};
INSERT INTO areas VALUES (radius, area);
radius := radius + [;
END LOOP;
END;

2) SET SERVEROUTPUT ON;
DECLARE
given_number number{8);
sum_of digit number(8):=0;
rem number(8);
BEGIN
given_number:=given_number || &given_number;
whilegiven_number>0
LOOP
rem: =mod (given_number,10};
sum of digit:=sum of digit+rem;

THE NEOTIA UNIVERSITY

given_number:=given_number/ 10;
END LOOP;
dbms_output.put_line('The sum of digitis: | |sum_of digit);

END;
3) SET SERVERQUTPUT ON;
DECLARE
term number (10};
suml number (9) ;
BEGIN
Suml:=0;
term:=&term;
foriin 1.. term
LOOP
suml :=suml+i;
END LOOP;
dbms_output.put_line (' sum="{|sum1);
END;
4) SET SERVEROUTPUT ON;
DECLARE
given_number varchar{5) := '5639';
str_length number(2);
inverted _number varchar(5);
BEGIN

str_length := length{given_number};
FOR cntrIN REVERSE I..str_length
LOOP
inverted number := inverted_number | | substr{given_number, cntr, [};
END LOOP;
dbms_output.put_line {'The Given number is' | | given_number};
dbms_output.put_line (‘The Invertednumberis' | | inverted_number);
END;

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 10

EXPERIMENT NAME:

For a table Employee (Empnovarchar(8), Salary number (10)), Write a PL/SQL code to create
a Procedure that will find salary of a specific employee & write a Function for the same
purpose.

OBJECTIVE:
Data manipulation using stored procedures & functions in PL/ SQL.

PRINCIPLE:

i) create or replace procedure findsalary(empnol in varchar2,salaryl out number) is salary2
number(10};
begin
select salary into salary2 from employee where empno = empnol;
salaryl:=salary2;
end;

setserveroutput on;

declare
empnol varchar2(8);
salaryl varchar2(10};

begin

empnol:=&empnol;

findsalary{empnol,salaryl};

dbms_output.put_line(' The salary of the employee is '| | salaryl);
end;

ii) create or replace function findsalaryflempnol varchar2)return number as salaryl
number (10});
begin
select salary into salaryfromemployeewhereempno=empnol;
return {salaryl);
end;

setserveroutput on;
declare
empnol varchar2(8};
salaryl varchar2{10};
begin
empnol:=&empnol;
salaryl:=findsalaryf(empnol);
dbms_output.put_line(' the salary of the employee is' | | salaryl);

end;

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 11

EXPERIMENT NAME:

Write a PL/SQL block of code that first withdraws an amount of Rs.1,000. Then deposits an
amount of Rs.1,40,000. Update the current balance. Then check to see that the current
balance of all the accounts in the bank does not exceed Rs.2,00,000. If the balance exceeds
Rs.2,00,000 then undo the deposit just made.

OBJECTIVE:
Perform Oracle defined and User defined Exception handling in PL/SQL

PRINCIPLE:

SET SERVEROUTPUT ON;

DECLARE
mBAL number(8,2);
BEGIN
INSERT INTO TRANS_MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR,
AMT, BALANCE)
VALUES ('TIOQ’, 'CAIO’, '04-1UL-2004", 'C', "Telephone Bill', "W', 1000, 31000);
UPDATE ACCT _MSTR SET CURBAL = CURBAL — 1000 WHERE ACCT NO ="CA10';
SAVEPOINT no_update;
INSERT INTO TRANS MSTR (TRANS_NO, ACCT_NO, DT, TYPE, PARTICULAR, DR_CR,
AMT, BALANCE)
VALUES ('TIOI', 'CAIQ’, '04-JUL-2004', 'C', 'Deposit’, 'D', 140000, 171000);
UPDATE ACCT_MSTR SET CURBAL = CURBAL + 140000 WHERE ACCT _NO ='CA10";
SELECT SUM({CURBAL) INTO mBAL FROM ACCT _MSTR;
I[F mBAL> 200000 THEN
ROLLBACK To SAVEPOINT no_update;
ENDIF;
COMMIT;
END;

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 12

EXPERIMENT NAME:

For the following table Employee solve the problem:

Column name Data type Size Attributes
Emp_code Varchar?2 6 Primary Key
Emp_name Varchar?2 25
Job Varchar? 25
Salary Number 8,2

The HRD manager has decided to raise the salary of employees by 0.15. Write a PL/SQL block to
accept the employee number and update the salary of that employee. Display appropriate message
based on successful modification of the record in the Employee table.

OBJECTIV

E:

Data handling by implicit & explicit cursors in PL/SQL.

PRINCIPLE:
SET SERVEROUTPUT ON;

EXEC 50QL

DECLARE sal_update CURSOR FOR
UPDATE employee SET salary

&emp code;

END EXEC;

IF SQL%FOUND THEN

= saglary * 0.15 WHERE emp code=

dbms_output.put_line('Employee Record Modified Successfully');

ELSE

dbms_output.put_line('Employee No. Does not Exist');

END IF;

THE NEOTIA UNIVERSITY

ASSIGNMENT NO: 13

EXPERIMENT NAME:

Create a transparent audit system for a table client- master. The system keeps track of the
records that are being deleted or updated. The functionality being when a record is deleted or
maodified the original record details and the date ofoperation is stored in the audit-client
table, and then delete or update is allowed to go through. Write a trigger for the above
problem.

Client-master (client_no, name, address, city, bal_due)

Audit-client (client_no, name, bal_due, operation, user_id, o_date)

Operation: Operation performed on the client-master table.
o_date : The date when the operation was performed.
user_id : The name of the user performing the operation.

OBJECTIVE:
Data manipulation Using trigger in PL/SQL.

PRINCIPLE:

This trigger is fired when an update or delete is fired on the table client_master. The trigger
first checks for the operation being performed on the table. Then depending on the
operation being performed, a variable is assigned the value 'update' or 'delete’. Previous
values of the modified record of the table client master are stored into appropriate
variables declared. The contents of these variables are then inserted into the audit table
auditclient.

CREATE TRIGGER audit_trail
AFTER UPDATE OR DELETE ON cfient_master

FOR EACH ROW
DECLARE
[* The value in the oper variable will be inserted into the operation field in
the auditclient table */

oper varchar2(8);

[* These variables will hold the previous values of client_no, name and
bal_due*/

BEGIN

END;

THE NEOTIA UNIVERSITY

client_no, varchar2(6);
name varchar2(20);
bal_due number({l0, 2);

/* if the records are updated in client_master table then operis
set to 'update’. */,

IF updating THEN

oper = 'update’;
END IF;

[* if the records are deleted in client _master table then gperis set to
‘delete’ */

IF deleting THEN

oper ='delete’;
END IF;

[* Store :old.client_no, :old.name, and :old.bal_due into client_no,
name and bal_due. These variables can then be used to insert
data into the auditclient table */

client_no'=:old.client no;

name = :old.name ;

bat_due :=:old.bal_due ;

INSERT INTO auditclientVALUES (client no, name, bal_due, oper, user,
sysdate);

