THE NEOTIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

DIGITAL LOGIC & MICROPROCESSOR LAB
MANUAL

DIGITAL LOGIC & MICROPROCESSOR LAB

INDEX
S.No Name of the Experiment , TPage
Number

1. | Study of basic gates. 3

2. | Realization of Gates by using Universal Building Blocks. 5

3. | Realization of Flip-Flops. 9

4. | 4-bit Ripple counter. 11
5. | 4-bit Shift Register. 14
6. | 4-bit & 8-bit Binary Adders 17
7. Addition of two &8-bit numbers 20
8. | Subtraction of two 8 - bit numbers 23
9. | Multiplication of two 8-bit numbers 26
10. | Division of two 8-bit numbers 29
11. | Addition of two 16-bit numbers 32
12. | Subtraction of two 16 - bit numbers 35
13. | BCD addition 38
14. | BCD subtraction 42
15. | Sorting of data in Ascending order and finding Largest 45

Number in the array
16. | Sorting of data in Descending order and finding Smallest 49
Number in the array

17. | DAC/ADC interface 53
18. | Stepper motor controller 57
19. | 8279- programmable keyboard/display interface 61

EXPERIMENT: 1 STUDY OF BASIC GATES

AIM: To study and verify the truth table of logic gates

LEARNING OBJECTIVE:
» Identify various ICs and their specification.

COMPONENTS REQUIRED:
» Logic gates (IC) trainer kit.
» Connecting patch chords.
» IC 7400, IC 7408, IC 7432, IC 74006, IC 7402, IC 7404, IC 7486

THEORY:

The basic logic gates are the building blocks of more complex logic circuits. These logic
gates perform the basic Boolean functions, such as AND, OR, NAND, NOR, Inversion, Exclusive-
OR, Exclusive-NOR. Fig. below shows the circuit symbol, Boolean function, and truth. It 1s seen
from the Fig that each gate has one or two binary nputs. A and B, and one binary output, C. The
small circle on the output of the circuit symbols designates the logic complement. The AND, OR,
NAND, and NOR gates can be extended to have more than two inputs. A gate can be extended to

have multiple mputs if the binary operation it represents 1s commutative and associative.

These basic logic gates are implemented as small-scale integrated circuits (SSICs) or as part
of more complex medium scale (MSI) or very large-scale (VLSI) integrated circuits. Digital IC gates
are classified not only by their logie operation, but also the specific logic-circuit family to which they
belong. Each logic family has its own basic electronic circuit upon which more complex digital

circuits and functions are developed. The following logic families are the most frequently used.

TTL Transistor-transistor logic
ECL Emitter-coupled logic
MOS Metal-oxide semiconductor

CMOS Complementary metal-oxide semiconductor

TTL and ECL are based upon bipolar transistors. TTL has a well established popularity among
logic families. ECL is used only in systems requiring high-speed operation. MOS and CMOS, are based

on ficld effect transistors. They are widely used in large scale integrated circuits because of their high

compenent density and relatively low power consumption. ChOE logic consumes far less power than
OGS logic. There are varicus cormumercial integrated circuit chips available. TTL ICs are usually

diztingui shed by numerical designation as the 5400 and 7400 zeries.

PROCFEDITRE:

1. Check the components for their working.

2. Incgert the appropriate IC into the IC bace.

3. DMlake connections as shown in the circuit diagram.
|

Provide the input data via the input switches and obzerve the output on output LED =

SNO | GATIE SYMBOL INPUTS OUTPUT
A | B C
1 | NANDIC % e 0 0 1
7400 o M— g 4B 0 1 1
B e 1 0 1
1 1 0
3. |NOR IC . 0 0 1
7402 aJ\. c=A+B "G 0
37// 1 0 0
L 1 1 0
3. | AND IC 0 0 0
7408 e
A '“\\ C=AB 0 1)
B W 4 i o 0
1 1 1
4 |oOR 0 0 0
IC 7432 AQ\ o - : :
| 1 0 1
ia SN
- 1 1 1
5. | NOT = 1 = 0
cr404 | A | -4
) 0 2 1
6. | EX-ORIC 0 0 0
7486 - 0 1 1
O B
T /éT 1 0 1

EXPERIMENT: 2 REALIZATION OF GATES BY USING UNIVERSAIL
BUIL.DING BILLOCKS

Aim : To Realize AND,OR,NOT,EX-OR and EX-NOR gates by using only
NAND and only NOR gates

Apparatus and Components :

S.No Name Quantity
1. Digital trainer 1
2 IC 7400 2
3. IC 7402 2

Procedure :

Using NAND Gates:

1. Derive truth table

2. Realize expression of AND gate by using number of NAND gates
3. Connect the circuit

4. Verify the truth table

5. Repeat above steps for OR, NOT, EX-OR and EX-NOR gates

Using NOR Gates:

1. Derive truth table

2. Realize expression of AND gate by using number of NOR gates
3. Connect the circuit

4. Verify the truth table

5. Repeat above steps for OR, NOT, EX-OR and EX-NOR gates

Result :

Basic gates are realized by using Universal building blocks.

Circuit Diagram :

Realization of AND gate using only NAND gates

4

)ﬂLY=ﬁ=B=AB

”\

9
P T =ATEB
10

1 A
A }
l

Realization of NOT gate using only NAND gates

Realization of EX-OR gate using only NAND gates

4

! 5 13 [

11
3 T=A®B
5 AB 5 12

10

e

Al B |YT=AB
0 0 0
0 0
1 0 0
1 1
A B | ¥ =A+BE
0] 0 0
0 1 1
1 0 1
1 1 1
A =]
0 1
1 0
A B |Y = A®B
0 0
:
1 0 1
1 0

Realization of EX-INOR gate using only NAND gates

A E ¥ = A®H
A i o © ! 1
3 0 il o %)
B = AB 1 0 O ng= A®B
1, 1 s
1oL

HEHAILLALIVIL U1 A NI SULE UNSIIIE UIILY [NV SUHLENS

A B |T = A®E
Q 8] 1

8] 1 o

L Q]

1 1 1

A B | ¥ =AB
0 0 o

0 1 0

1 0 O

1 1 1

A B | v=A+B
0 O 8]

O 1 1

1 0 1

al 1 1

A Y =A

0 1

Realization of EX-OR gate using only WOR gates

A = ¥ = AGH
o 0 0
O 1 1
1 Q 1
i 1 O
Realization of EX-INOR gate using only NOR._ zates
5
i L A | B |¥=A®H
& 12
. _i>“l’* 13 Y=A®B o
L - 8] 1
B3 9 11 <
10 1 o O
&]| 1 1

EXPERIMENT: 3 REALIZATION OF FIL.IPFL.OPS

Aim : To Construct different types of flip-flops and verify the truth tables.

Apparatus and Components :

S.No Name Quantity
L. Digital trainer 1
2 IC 7476 1
3. IC 7400 1
4. IC 7404 1

Procedure :

1. RS flip-flop is wired as shown in fig and input signals are fed from logic input
switches and the output is monitored on the logic level output condition indicators and
the truth table is verified.

. JK flip-flop is wired as shown in fig and the input signals are fed from logic input
switches and the output is monitored on the logic level output condition indicators and

the truth table is verified.
3. Verify the truth tables of D flip flop and T flip flop in the same procedure.

Result :

Truth tables of RS, JK, D and T flip-flops are verified.

Circuit Diagram:

Realization of RS flip- flop using NAND gates

Clle—

FPrezet [Fr) ;
2
J—4 15— Q
Clk— oy (&°
K —18 14— 6
3
I
Clear | Cr]
Clk 9 R Theoretical | Practical
Qn+1 Qn+l
0 | X | X Qn
1| 0o | 0 Qn
1 0 1 0
1 1 0 1
1 1 1 ?
I flip- flop
Freset [Fr]
-
i 4 15H<—0
011{% | e
16 14— 0
3
1
Clear (Cr]
(k| PR CR J K Theoretical | Practical
Qn+l Q]]+l
0 0 1 X X 1
0 1 0 X X 0
|14 1] 0] 0 Qn
) 1 1 0 1 0
) 1 1 1 0 1
L1 1]1 Qn

D flip- flop

" Preset (Pr]

I

2
D % 15— Q
7476
Clle : 1 Ic
7404 Y2 B
16 ld——'m
3
[
Clear [Cr)
PRI CR T Theoretical Practical
Q]l+l Q]H'l
0 0 1 X 1
o |1 []o] X 0
RN ERE On
l 1 1 1 Qn

EXPERIMENT: 4

4-BIT RIPPLE COUNTER

Aim : To design Asynchronous (Ripple) counter and verify the truth table.

Apparatus and Components :

S.No Name Quantity
1. Digital trainer 1
2 IC 7476 2

Procedure :

1. Ripple counter circuit is connected as shown in the circuit diagram.

2. 1Hz clock pulse is applied to the pin shown.

3. The outputs Q,Q71Q,Q3 are observed and verify the truth table.

Result :

Asynchronous counter is constructed and truth table 1s verified.

4 — bit Ripple Counter Truth Table.

Clock pulses Q3 Q2 Q1 Qo0
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
- 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 | 1
8 1 0 0 0
9 | 0 0 1
10 | 0 1 0
11 1 0 1 1
12 | 1 0 0
13 1 1 0 1
14 | 1 1 0
15 | 1 1 1
16 0 0 0 0

Circuit Diagram:

2le)

&1 = PUD
G =204

Jo1unoy orddry 11q - 4

be

ST

I I

SLTL

9T

MﬁUhc._”|h.|

v

1T

Ls
40

44

|
Sitl HID 4

Al

Zz, r

oG

ST

Ls
J0

FLYFL

I3

44

b
A0 4

9T

I

11

YS1H
l=aal]
USH
I Jd
Brel S
QAFL H[D Ac@|h]~ lm
r
D 6]
=
ys1H m
=

Clk | PR | CR

Qn+1

Qn+1

EXPERIMENT: 5 4 - BIT SHIFT REGISTER

Aim : To design 4-bit shift register and verify the operation of serial loading
and parallel loading,

Apparatus and Components :

S.No Name Quantity
: Digital trainer 1
2. IC 7474 2
IC 7400 1

Procedure :

1. Connect the circuit as shown in fig.
2. For serial loading keep load low.

3. First clear all the flip-flops by supplying clear = low
4. First enter serial input one by one, through clock pulse; we

will get Parallel output at Q3Q7Q1Q,, . After applying 4 clock
pulses we will get serial output.

5. For parallel input keep load = high
6. Directly apply parallel input to P3,P9,P1,Prg: we will get
parallel output at Q3Q50Q1Q,, After applying 4 clock pulses we will

get serial output.

Result : The operation of 4-bit shift register for serial loading and parallel loading is observed

4 — bit Shift Register Truth Table :

Serial Input Serial Output / Parallel Output: The input is 1010.

Parallel output
Load Clk | Clear Serial i/p Serial output Qo
Q3 Q2 Q1 Qo
0 X 0 X 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 2 1 1 1 0 0 0 0
0 3 1 0 0 1 0 0 0
0 4 1 1 1 0 1 0 0
0 5 1 0 0 1 0 1 1
0 6 1 0 0 0 1 0 0
0 Z 1 0 0 0 0 1 1
Parallel input Parallel OQutput / Serial Output : The input is 1010.
Parallel i/p Parallel output Serial
Load | Clk | Clear output
Pr3 | Pr2 | Prl | Pr0 Q3 Q2 Q1 Qo ye
0 X 0 X X X X 0 0 0 0 0
1 X 1 1 0 1 0 1 0 1 0 0
0 1 1 X X X X 0 1 0 1 1
0 ?] X X X o 0 0 1 0 0
0] 3 1 X X X X 0 0 0 1 1

Circuit [

L=PUD

bibL Ol
BT = 004
= 1315189 T -
4=PUD oo] NS89 WIYS 19- P
BT = 004
39010
1 €l 1 c1
40 30 i) %)
& S|TT ~le s
H,:UA Al) H][) U:UA
Lt bLb L bivL
d
£ql_ndul
. ol [BlU=S
DO HO
pEOT]

EXPERIMENT: 6 4-BIT & 8-BIT BINARY ADDERS

Aim : To construct and evaluate 4 bit and 8 bit adders

Apparatus and Components :

S.No Name Quantity
iR Digital Trainer 1
2. IC 7483 2
3. IC 7486 2
4. IC 7404 1
Procedure :
Adders:

1. The circuit is connected as shown in fig.

2. Apply two 4 bit positive numbers A and B, observe the output.
3. Verify the truth table.

4. Repeat above steps for 8 bit adders also.

Result :

The truth tables for 4 bit & 8 bit full adders are verified.

Truth Table :

4 — bit Binarv Adder :

A3 A2 Al Ao B3 B2 B Bo Cin 83 82 S1 So Cout

8 —bii Binary Adder :

AT

ad

|

il

il

an

Cout

Circ uit Diagram:
A Input E Input
Az hAo AN E-HsB{Eq
3810 154 71
WEE 5
13
Gnd A 7483 Cin
14 15 2 6 9

Cout a5 mg 81 S0

Dutput

4 - bit Adder

16471

7483

14 15 2 6 §

A Input
dhe
AzAghA
@: 10

lar—
Cin

12

Vee

Gnd

Cin

B Input
75 By

-

13810 1647 1

A Input
7864

13

74383

14 15 2 6 ©

12

150

0o

30

Cuut .

Yoo

Gnd

Ctll.lt S-? 56 55 54

Output

Dufp ut

8 - bit Adder

if{front==-1)

{
print{{"queue empty");
return;

}

else

{
print{{"n value in the queue are as follow:");
for(i=front;i<=rear;i++)
printf("n%od ", dequeue[i]);

#include <stdio.h>
#include <stdlib.h=

f*declaring a structure to create a node*/

struct node
i

int data;
struct node *prev, *next;

W
struct node *head = NULL, *tail = NULL;

struct node * createNode(int data)
{

/*allocating im plicit memory to the node*/

struct node *newnode = (struct node *ymalloc(sizeof (struct node));
newnode->data = data;

newnode->next = newnode->prev = NULL;

return (newnode),

}

/* create sentinel(dummy head & tail) that helps us to do insertion and deletion
operation at front and rear so easily. And these dummy head and tail wont get deleted
till the end of execution of this program */

void createSentinels() /*creating a head and tail*/

{
head = ereateNode(0);
tail = createNode(0);
head->next = tail;
tail->prev = head,

b

/* insertion at the front of the queue */
void enqueueAtFront(int data)
{
struct node *newnode, *temp;
newnode = createNode(data),
temp = head->next;
head->next = newnode;
newnode->prev = head;
newnode->next = temp;
temp->prev = newnode;

FLOWCHART:

load address of data
in HL Register pair

i

clear C

Register

et the first data in
A Register

increment HL register pair

J

add the content of memory
to A Register

increment
C Register

increment HL pair and
store the sum in memory

increment HL pair and
store the camy in memory

stop

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE TLABEL

LOCATION CODE

3C0O0H 21 40 8C
3C03H OF 00
3CO5H 7B
8C0OoH 23
3C0O7H 80
3CO8H D2 0C 8C
3COBH acC
3cocH 23
8CODH s
3COEH 23
8COFH71

3C10H 76

OUTPUT:

8C40::02

3C41:03

8C42::05

3C43:00

1.1:

MNEMONIC

LXI
MVI

MOV
INX

ADD

INC

INR

INX

MOV
INX

MOV
HLT

H, 8C40H
C.001

AM

2

H

L1

COMMENT

// Set pointer for data.
// Clear C Reg. to account for
carry
/1 Get first data in A reg.
{{ Inerement the pointer for
second data
// Add second data which is stored in
memory to A. sum in A Reg.
/iF CY=0, goto 1.1
// if CY=1 increment register C
// increment the pointer to store the
sum in Memory
// Store the sum in memory.
/" Increment the pointer to store the
carry in Memory.
/' Store the carry in memory
i Halt the program

EXPERIMENT: 8 SUBTRACTION OFTWO 8 - BIT NUMBERS

PROGRAM:

Write an assembly language program to subtract two numbers of 8-bit data stored in memory
locations 8C40H and 8C41H. Store the magnitude of the result in 8C42H. If the result is positive
store 00 in 8C43H or if the result 1s negative store 01in 8C43H.

PROGRAM ANATLYSIS:

To perform subtraction in 8085 one of the data should be in accumulator and another data can be
in anyone of the general purpose register or in memory. After subtraction the result will be in
accumulator. The 8085 performs 2°s complement subtraction and then complements the carry.
Therefore if the result is negative then carry flag is set and accumulator will have 2%
complement of the result. Hence one of the register 1s used to account for sign of the result. To

get the magnitude of the result again take 2’s complement of the result.

ALGORITIIM:

1. Load the subtrahend (the data to be subtracted) from memory to accumulator and move it
to B- register.

L.oad the minuend from memory to accumulator.

Clear C register to account for sign of the result.

Subtract the content of B-register from the content of the accumulator.

Check for carry . if carry =1 go to step 6 or if carry=0, go to step 7.

Increment C register , complement the accumulator and add 01H

store the difference in memory.

Movwve the content of C register (sign bit) to accumulator and store in memory.

ANSY LU - R

Stop.

get the sultrahend
in - register

1

store the contemt of
A - register in B- register

s
get the minuend in
A - register

]

clear C© registerto
account for sign

subtract the content of B
register from A register

increment
C - register

complement
A rey and
add 01H

store thie result in
Memory

move the sign bt to
A reg and store in
memory

e e

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABELL. MNEMONIC

LOCATION CODE

SCOOH 3A 41 8C
8CO3H 47
sC04H 3A 40 8C
8CO7H OE 00
SCO9H 90
8COAH D2 11 8C
8CODH 0C
SCOEH 25
8COFH Co6 01
8C11H 32 42 8C L1
8C14H 79
8C15H 32 43 8C
SC18H 76
OUTPUT:

8C40::02

8C41::03

8C42::01

8C43::01

LDA 8C41H
MOV BA
LDA 8C40H
MVI C,00H
SUB B
JNC © L1
INR C
CMA
ADI 01
STA 8C42H
MOV AC
STA 8C43H
HI.T

COMMENT

; get subtrahend from 8C41H and
store in Ace

; move the content of the
Ace. into B reg.

; get the minuend in A - reg
; clear C register , to account for sign.
, get the difference 1n A register
:1if CY =0, then go to L1
; if CY = 1 then increment C register.
; get 2’s complement of difference
in A-reg
, increment A register
; store the result in memory
: move the barrow to accumulator
; store the sign bit in memory.

; halt the program

EXPERIMENT: 9 MULTIPLICATION OF TWO 8-BIT NUMBERS

PROBI.EM:

Write an assembly language program to multiply two numbers of 8-bit data stored in memory

8C40H and 8C41H. Store the product in 8C42H and 8C43H.

PROBILLEM ANATYSIS:

In this method multiplication is performed as repeated additions. The initial value of sum is
assumed as zero. One of the data is used as count (N) . For number of additions to be performed.
Another data i1s added to the sum N times where N 18 the count. The result of the product of two

8-bit data may be 16-bit data. Hence another register is used to account for over flow.

ALGORITHM:

[a—

Load the address of the first data in H L pair.
Clear C register for over flow.

Clear the accumulator.

Move the first data to B register.

Increment the pointer.

Move the second data to D register from memory.
Add the content of D-register to accumulator.

Check forcarry. IfCY=1 go to step 9 or if CY=0 go to step10.

2w o B e B

Increment C register.

—
=

. Decrement B register.

11. Check whether count has reached zero. If ZF=0 repeat steps 7 to 11. if ZF=1 got to next
step.

12. Increment the pointer and store the 1.SB of the product in memory.

13. Increment the pointer and store the MSB of the product in memory.

14. Stop.

stant

load the address of data
in HL pair

clear € - reg and
A - reg

using HL as address pointer
getthe first data in B - reyg and
seconddata in D - reg

x |

4
add the content of
D - reqg to A - rey

increment
C - reg for ca

]

increment the HL pair and store
the LSE of product in memory

)|
increment the HL pair and store
the MSE of product in memory

I

ASSEMBIY LANGUAGE PROGRAM:

MEMORY MACHINE
LOCATION CODE

3CO0H 21 40 8C
3CO3H OF 00
3COs5H AF

3CO6H 46

8CO7H 23

3CO8NI 56

3CO1 82

3COAII 02 0F &C
3CODI ac
3COEN 05

8COrH C2 09 B8C
3C120 23

3C13H it

3C14H 23

3C150 71

8CleH 76

OUTPUT:

8C40::02

8C41::03

8C42::06

8C43::00

LABEL

11

1.2

HLT

MNEMONIC COMMENT
LXI H, 8C40H ; set pointer for data.
MVI C, OOH ; clear C register to account

XRA

MOV
INX

MOV
ADD

INC
INR
DCR
INZ.
INX
MOV

INX
MOV

B.M

D.M

2

D

1.2

L1

M,A

for over flow
: clear accumulator
(initial sum=0).
; get first data in B register.
; increment pointer.
; get second data in D register.
; add the content D register to
accumulator
;1if CY=0, goto 1.2
; if CY=I1 increment C register
; if CY =0 decrement B register
; repeat addition until ZF=1.
; Increment HL. Reg pair
; store LLSB of product
in memory.
; Increment HL. Reg pair
; store MSB of product in
memoty.

; halt the program.

EXPERIMENT: 10 DIVISION OF TWO 8-BIT NUMBERS

PROBIIEM:

Write an assembly language program to divide two numbers of 8 —bit data.

ALGORITHM:

1. Load Divisor and Dividend

2. Subtract divisor from dividend

3. Count the number of times of subtraction which equals the quotient

4. Stop subtraction when the dividend is less than the divisor . The dividend now
becomes the remainder. Otherwise go to step 2.

5. Stop the program execution.

FLOWCHART:

START

B 000

.

[HL]
o500
¥

A DM

[HL] O [HL]+1

M 0 A-M

BA <> YES

B (0 B-1

[HL] [HL]+1

|
l v
-+
M] [A]

-
STOP
l

AlA+M

Ho

ASSEMBLY TLANGUAGE PROGRAM:

ADDRESS

4100
4101
4102
4103
4104
4105
4106

4107
4108
4109
410A
410B
410C
410D
410E

410F

4110

4111

4112

OUTPUT:

4500::06
4501::03
4502::00
4503::02

OPCODE LABELL MNEM

06
00
21
00
45
K
23

96
04
D2
07
41
86
05
23

i

23

70

76

LOOP

ONICS
MVI

LxI

MOV

INX

SUB

INR
INC

ADD
DCR
INX
MOV
INX
MOV

HLL

OPERA
ND
B.00

H.4500

LOOP

anlilvs i

M.A

M.B

COMMENTS
Clear B reg for quotient

Initialize HL reg. to
4500H

Transfer dividend to acc.
Increment HL reg. to point
next mem. Location.
Subtract divisor from dividend
Increment B reg
Jump to LOOP if result does
not yield borrow

Add divisor to acc.
Decrement B reg
Increment HL reg. to point
next mem. Location.
Transfer the remainder from
acc. to memory.
Inerement HL reg. to point
next mem. Location.
Transfer the quotient from B
reg. to memory.

Stop the program

EXPERIMENT: 11 16-BIT ADDITION

PROGRAM:

Write an assembly language program to add two numbers of 16-bit data stored in memory
8C40H, 8C41H and 8C42H, 8C43H. The data are stored such that LSB first and then MSB and
store the result from 8C44H to 8C46H

PROBLEM ANALYSIS:

The 16-bit addition can be performed in 8085 microprocessor either in terms of 8-bit addition
or by using DAD instruction. In addition using DAD instruction, one of the data should be in H
L pair and another data can be another register pair. After addition the sum will be in H L
register pair. If there is a carry in addition then that is indicated by setting carry flag. Hence one

the register is used to account for carry.

ALGORITHM:

1 load the first data in H L register pair.

. Move the first data to D E register pair.

. Load the second data in H L register pair.

. Clear A register for carry.

. Add the content of D E pair to H L pair.

. Check for carry. If carry =1, go to step 7 or if carry=0 go to step &.
. Increment carry register (A) to account for carry.

. Store the sum and carry in memory.

=T BS - NV S N

Stop.

FLOWCHART:

start

load the first data in
HL pair and save in DE pair

get second data
in HL pair

L

clear Al - register

add the content of
DE pairto HL pair

increment
A - reqister

q

store the sum
(HL pair) in memory

store the cany (Axeq)
in memory

stop

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC
LOCATION CODE

8COOH 2A 40 8C LHLD 8C40H
8CO3H EB XCHG
8C04H 2A 42 8C LHLD 8C42H
8CO7H AF XRA A
8CO8H 19 DAD D
8CO09H D2 0D 8C JNC 11
8COCH 30 INR A
8CODH 22 44 BC .1 SHLD 8C44H
8C10H 32 46 8C STA 8C46H
8C13H 76 HLT
ouTPUT:

8C40::02

8C41::03

8C42::05

8C43::00

8C44::07

8C45::03

8C46::00

COMMENT

, get first data in HI. reg. pair.

, store first data in DE reg. pair
, get second data in HL reg. pair
; clear A register for carry

; get the sum in HL pair.

;if CY=0goto L1

; if CY=1, increment A reg.

; store the sum in memory.

; store the carry in memory.

; halt the program

EXPERIMENT: 12 16-BIT SUBTRACTION

PROGRAM:

Write an assembly language program to subtract two numbers of 16-bit data stored in memory
from 8C40H to 8C43H. The data are stored such that LSB first and then MSB. Store the result in

8C44H and 8C45H.

PROBLEM ANATLYSIS:

The 16-bit subtraction is performed in terms of 8-bit subtraction. First LSB’s of the data are
subtracted and the result is stored in memory. Then MSB’s of the data are subtracted along with

borrow in the previous subtraction and the result 1s stored in memory.

ALGORITHM:

1. TLoad the low byte of subtrahend in accumulator from memory and move is to B-register.
Load the low byte of minuend in accumulator from memory.

Subtract the content of B-register from the content of accumulator.

Store the low byte of result in memory.

Load the high byte of subtrahend in accumulator from memory and move it to B-register.
Load the high byte of minuend in accumulator from memory.

Subtract the content of B-register and the carry from the content of accumulator.

Store high byte of result in memory.

R W B M g R B

Stop the program.

FILLOWCHART:

P -

(_ stat

e T e

g

get the lovw hyte ofsubtrahend in
A and move to B

et the low hyte of minuend in A

|

perform subtraction of low hytes
and store the result in memory

|

et the high bhyte of subtrahend in A
and move to B

|

get the high hyte of minuend in A

i

subtract the content of B register
and canry from A register

L

store the result in memory

stop

L

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE
LOCATION CODE

8CO0H

8CO3H

8C04H

8CO7TH

8CO8H

8COBH

SCOEH

8COrm

8C12H 98

8CI13H

&CloH
OuUTPUT:
8C40::05
8C41::03
8C42::02
8C43::01
8C44::03
8C45::02
8C46::00

3A 42 8C

47

3A 40 8C

90

32 44 8C

3A 43 8C

47

3A 41 8C

32 45 8C

76

MNEMONIC

LDA &8C42H

MOV B, A

LDA &8C40H

SUB B

STA §C44H

LDA~ 8C43H

MOV B, A

LDA &C41H

SBB B

STA 8C45H

HOLT

COMMENT
; get the LSB of subtrahend from
8C42H and store in Acc

: Move the LSB of subtrahend
to B-register

, get the LSB of minuend in
A-register

; get the difference of LSB’s in
A-register

, store the result in memory.

; get the MSB of subtrahend from
8C43H and store in Acc

: Move the MSB of subtrahend to
B-register.

, get the MSB of minuend in
A-register.

; get the difference of MSB’s in
A-register.

. store the result.

; halt the program

EXPERIMENT: 13 TWO DIGIT BCDADDITION

PROGRAM:

Write an assembly language program to add two numbers of two digit (single precession) BCD

data stored memory locations 8C40H and 8C41H. Store the result in 8C42H and 8C43H.

PROBLEM ANAILYSIS:

The 8085 microprocessor will perform only binary addition. Hence for BCD addition, the binary
addition of BCD data is performed and then the sum is corrected to get result in BCD. After

binary addition the following correction should be made to get the result in BCD.

I if the sum of lower nibble exceeds 9 or if there 1s an auxiliary carry then 06 1s added
to lower nibble.
2. if the sum of upper nibble exceeds 9 or if there i1s carry then 06 is added to upper
nibble.
The above correction is taken care by DAA instruction. Therefore after binary addition execute

DAA instruction to do the above correction in the sum.

ALGORITHM:

[

I.oad the first data in accumulator and move it to B-register.

Load the second data in accumulator.

Clear the C register for storing carry.

Add the content of B-register to accumulator.

Execute DAA instruction.

Check for carry. If carry=1, go to step 7 or if carry=0, go to step 8.
Increment C register to account for carry.

Store the sum in memory.

e e B 8 D

Move the carry (content of C register) to accumulator and store in memory.

FLOWCHART:

start

get the first data in A - reg
and move to B - reg

get second data in
A -rey

clear C-reg for cany

"
add the content of B - reg
to A - rey and perform decimal
adjust after addition

yes

I

increment
- req For camy

|

store the sum in memory

move the content of C-rey
to A - req and store in memory

stop

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

8CO0OH 3A 40 8C LLDA 8C40H ; get first data in accumulator.

8CO3H 47 MOV B, A ; transfer accumulator data
to B-register.

8C04H 3A 41 8C LDA 8C41H ; get second data in A-register.

8COTH 0E 00 MVI C,00H ; clear C register for accounting
carry.

8CO9H 80 ADD B ; add the content of B-register to
A-register.

8COAH 27 DAA ; get the sum of BCD data in
A-reg.

8COBH D2 OE 8C INC 11 ; if CY=0, go to L.1.

8COEH 0C INR C ; 1if CY=1, increment C- reg.

8COFH 32 428C L1 STA 8C42ZH ; store the sum in memory.

8C12H 72 MOV A,C ; move the carry to A- reg.

8C13H 32 438C STA 8C43H , store the carry in memory.

8C16H 76 HLT ; halt the program.

OUTPUT:

8C40::80

8C41::80

8C42::60

8C43::01

EXPERIMENT 14 TWO DIGIT BCD SUBTRACTION

PROGRAM:

Write an assembly language program to subtract BCD numbers of 2 digit BCD data stored in
memory 8C40H and 8C41H. store the result in 8C42H.

PROBLEM ANATLYSIS:

The 8085 microprocessor will perform only binary subtraction. Hence for BCD subtraction 10’s
complement subtraction is performed. First the 10°s complement of the subtrahend is obtained

and then added to minuend. The DAA instruction 18 executed to get the result in BCD.

ALGORITHM:

[a—

Load the subtrahend in A-register and move to B-register.

Move 99 to A-register and subtract the content of B-register from A-register.
Increment the A-register.

Move the content of A-register to B-register.

Load the minuend in A-register.

Add the content of B-register to a A-register.

Execute DAA instruetion.

Store the result in memory.

2w o B e B

Stop.

FLOWCHART:

e art B

et the subtrahend in A - reg
and move to B - reg

move 99to0 A :rieg and subtract
B-req from it

increment A - reqg and save
in B -reg

get the minuend in A - rey

add the contentof Bto AA
and perform DAA

store the result in memory

R L
3

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT
LOCATION CODE

8COOH 3A 41 8C LDA 8C41H ; get the subtrahend in to
accumulator.
8CO3H 47 MOV BA . move the data into B-register from
A-reg.
8CO4H 3E 99 MVI A99 ; move the 99 to A-reg.
8C0O6H 90 SUB B : subtract the subtrahend from 99.
8CO7H 3C INR A ; 10°s complement of subtrahend.
8CO8H 47 MOV B.A ; store the 10°s complement
of subtrahend in B
8CO9H 3A 40 8C LDA 8C40H ; get the minuend in A-register
8COCH 80 ADD B . Get the BCD sum of minuend

and 10°complemnt of subtrahend.

8CODH 27 DAA : the sum is the difference
between given BCD
data.
8COEH 32 42 8C STA 8C42H , store the result in memory.
8CI11H 76 HLT ; halt the program.
OUTPUT:
8C40::80
8C41::60
8C42::20

8C43::00

EXPERIMENT 15 SORTING OF DATA IN ASCENDING ORDER AND
FINDING LARGEST NUMBER IN THE ARRAY

PROGRAM:

Write an assembly language program to sort an array of data in ascending order and find the
largest number and display it in the data field. The array is stored in memory starting from
8C40H. The first element of the array gives the count value for the number of elements in the

array.

PROBLEM ANALYSIS:

The algorithm for bubble sorting is given below. In bubble sorting of N-data,

(N-1) comparisons are carried by taking two consecutive data at a time. After each comparison,
the data are rearranged such that smallest among the two is in first memory location and largest
in the next memory location. When we perform (N-1) comparisons as mentioned above, for (N-

1) times then the array consisting of N-data will be sorted in the ascending order.

ALGORITHM:

Load the count value from memory to A-reg. and save it in B-reg.
Decrement B-reg . (B is a count for N-1 repetitions)

Set H L pair as data address pointer.

Set C-register as counter for (N-1) comparisons.

Load a data of the array in accumulator using the data address pointer.
Increment the H L pair (data address pointer).

Compare the data pointed by H L with accumulator.

ge BT B M B B BB

if carry flag is set (if the content of the accumulator is smaller than memory) then go to

step 10, otherwise go to next step.

9. Exchange the content of memory pointed by H L and the accumulator.

10. Decrement C-register. if zero flag is reset go to the step 6 otherwise go to next step.
1% Decrement B-register. If zero flag is reset go to step 3 otherwise go to next step.

12, Load the largest value from memory into accumulator.

13. Store the content of accumulator in memory location 8FF1H.

14. Call subroutine to display the content of memory location 8FF 1H into the data field.

FLOWCHART:

¢ stan Yy
=,

—

load the count value from memory
to A rey and save it in B rey

decrement B regy
(set count for (N-1) repetitions)

load the starting address of
data armmay in HL pair

I |

using data pointer,
load the count value
from memory to C reg

decrement ¢ rey ’
(set oounter for (N-1)comparisions)
o

B !

increment the data poinf“r
(HL pair)

ki ';

compare the data pointer by HL
with acciumulator

*

& ohek No
~ whether

-

cy=1

|

exchange the content of

memeorypointed by HL and previous

memory looation

|

] decrement C - rm

olteok

Iter
Z

[deorement & - reg]

No

Yes

yet the lamest numhber into accumulator
from the memory location pointed hy HL

s

save the oomtent of accumulator
in the memory location 8FF 1H

)

call subrowtine to display the
comtent of 8FF 1H in the data field

oy

<
-

ASSEMBLY LANGUAGE PROGRAM:

MEMORY MACHINE LABEL MNEMONIC COMMENT

LOCATION CODE

SCOOH 3A 40 8C LDA B8C40H ; load the count value in A-reg.

8CO3H 47 MOV B.A , set counter for (N-1)repetitions of

S8CO4H 03 DCR B N-1 comparisons.

8CO5SH 21 40 8C L2 LXI H.8C40H , set pointer for array.

8COS8H 4E MOV CM , set counter for (N-1) comparisons.

8CO%H OD DCR C g

8COAH 23 INX H , iIncrement pointer

8COBH 7E L1 MOV AM , get one data of array in A-reg.

8COCH 23 INX H , increment pointer.

8CODH BE CMP M ; compare next data with A-reg.

S8COEH DA 16 8C JC L3 ; if content of A 1s less than
memory then go to L3

&C11H 56 MOV D.M , if the content of A is greater than

8CI12H 77 MOV M,A the content of memory then exchange

8CI3H 2B DCX H the content of memory pointed by H L

8Cl14H 72 MOV M.D and previous location.

8C15H 23 INX H 3

8C16H OD I3 DCR C ; decrement C-register.

8CI17H C2 0B 8C INZ 11 , repeat comparisons until C reg.
count 1s zero.

8CIAH 05 DCR B , decrement B-register.

8CIBH C2 05 8C INZ 1.2 ; repeat until B count is zero.

8CIEH 7E MOV AM ; get the largest number into
accumulator.

8C1IFH 32 F1 8F STA &8FF1H . store the content of accumulator
in memory location 8FF1H.

8C22H CD 4C 04 CALL 044CH ; call subroutine to display the
content of the memory location
8FF1H 1n data field.

8C25H 76 HIT ; halt the program.

OUTPUT:

8C40::03 8C43::03
8C41::01 8FF1:03

8C42::02

EXPERIMENT 16 SORTING OF DATA IN DESCENDING ORDER
AND FINDING SMALLEST NUMBER IN THE ARRAY

PROGRAM:

Write an assembly language program to sort an array of data in descending order and find the
smallest number and display it in the data field. The array is stored in memory starting from
8C40H. The first element of the array gives the count value for the number of elements in the

array.

PROBLEM ANATLYSIS:

The algorithm for bubble sorting is given below. In bubble sorting of N-data , (N-1) comparisons
are carried by taking two consecutive data at a tume. After each comparison, the data are
rearranged such that largest among the two is in first memory location and smallest in the next
memory location. When we perform (N-1) comparisons as mentioned above, for N times then

the array consisting of N-data will be sorted n the descending order.

ALGORITHM:

1. Load the count value from memory to A-reg. and save it in B-reg.
Decrement B-reg (B is a count for N-1 repetitions).

Set H L pair as data address pointer.

Set C-register as counter for (N-1) comparisons.

Load a data of the array in accumulator using the data address pointer.
Increment the H L pair (data address pointer).

Compare the data pointed by H L with accumulator.

o P B B B R

If carry flag is reset (if the content of the accumulator 1s larger than memory) then go to
step 10, otherwise go to next step.

9. Exchange the content of memory pointed by H L and the accumulator.

10. Decrement C-register. if zero flag is reset go to the step 6 otherwise go to next step.

11. Decrement B-register. If zero flag 1s reset go to step 3 otherwise go to next step.

12. Load the smallest value from memory into accumulator.

13. Store the content of accumulator in memory location 8FF1H.

14. Call subroutine to display the content of memory location 8FF1H into the

T start Oy
SO T
i

load the count value from memory
to A req and save itin B rey

|

decrement B rey
{ set coumt for { N-1) repetitions)

load the starting address of
data armay in HL pair

using data pointer,
load the count value
from memory to C rey

decrement ¢ rey
(set counter for (N-1)comparisions)
oJ

i
increment the data pointer
(HL pair) '

compare the data pointerby HL
with accumulator

T

]

exchange the content of

memorypointed hy HL and previous
memeory looation

|

| decrement C - reg |

MA
< wh

< ether
ZF=1

yes

| decrement & ~reg |

yes

yet the Ialmcsi numhber into accumulator
from the memory location pointed by HL

J.

save the content of accumulator
in the memory location 8FF1H

i

call subrowtine to display the
content of 8FF 1H in the data field

-5

FLOWCHART:

ASSEMBLY LANGUAGE PROGRAM:
MEMORY MACHINE

LOCATION CODE

8CO0H

8CO3H

8CO4H
8CO5H
8§CO8H

8CO9H
8COAH
8§COBH

8COCH
8CODH

8COEH

8C11H

8C12H
8CI13H
§C14H
8C15H
&CleH
8C17H

8C1AH
8C1BH
8C1EH

8CI1FH

8C22H

8C25H

3A 40 8C

47

03
2] 40 8C
4E

OD
23
ZJE

23
BE

DA 16 8C

56

23

2B

92

23

OD

C2 0B 8C

03
C2 05 8C
2B

S F1 8F

CD 4C 04

76

1.2

L1

L3

LABEL MNEMONIC

LDA 8C40H
MOV BA

DCR B
LXI H,8C40H
MOV CM

DCR C
INX H
MOV AM

INX H
CMP M
JNC L3

MOV DM

MOV M, A
DCX H
MOV M, D
INX H
DCR C
INZ L1

DCR B
INZ L2
MOV AM

STA 8FF1H
CALL 044CH

HLT

COMMENT

. load the count value in
A-reg.

: set counter for
(N-1) repetitions of
N-1 comparisons.

; set pointer for array.

. set counter for

(N-1) comparisons.

; increment pointer

; get one data of array in
A-reg.

; increment pointer.

; compare next data with

A-reg.

. if content of A is less than
memory then go to L3

. if the content of A 1s

greater than the content of

memory then exchange the

content of memory pointed
by H L and previous location.

; decrement C-register.
; repeat comparisons until
C reg. count is zero.

; decrement B -register.

; repeat until B count is zero.

; get the smallest number
into accumulator.

: store the content of
accumulator in memory
location 8FF1H.

; call subroutine to display the
content of the memory
location 8FF1H in data field.

; halt the program

EXPERIMENT 17 DIGITAL TO ANALOG CONVERSION

a) To generate square wave at the DAC2 output

Source code:

ORG 4100
START - MVI A, 00
ouT 0CSH
CALL DELAY
MVI A, OFF
ouT 0CSH
CALL DELAY
JMP START
DELAY : MVI B, 05
L1 : MVI C, OFF
L2 3 DCR C
JNZ L2
DCR B
JNZ L1
RET

WAVEFORM:

Square wave

f=— one wave cycle —

CALCULATION:

Amplitude:

Time Period;

RESULT: Hence the Square wave 1s generated.

b) To generate sine-wave at DAC1 output.

Source code:

ORG 4100H
START : LXI
MVI
LOOP : MOV A, M
OUT
INX
DCR
INZ
JMP
LOOK-UP TABLE : (4110)
7F 8A 95
AA B5 BF
D1 DY E0
ED F2 F7
FC FE FF
FC FA F7
ED E7 EO0
D1 CS BF
AA A0 95
7F 74 69
53 49 3F
2D 25 1D
10 0B 07
01 00 01
07 0B 10
1D 25 2D
3F 49 53
69 74
WAVEFORM:

H, 4110H
C, 46

0COH
H

C
LOOP
START

A0
C8
E7
FA
FE
F2
D9
BS
8A
SF
36
17
04
04
17
36
57

CALCULATION: Amplitude:

Time Period;

¢) To generate triangular waveform at DAC2 output

Source code:

ORG 4100H
START - MVI L, 00
L1 - MOV A, L
ouT 0C8H
INR L
JNZ L1
MVI L, OFFH
L2 - MOV A, L
ouT 0C8H
DCR L
JNZ L2
JMP START

CALCULATION:

Amplitude:

Time Period:

RESULT: Henece the Triangular wave is generated.

d) To create a saw-tooth wave at the output of DAC1.

Source code:

ORG 4100H
START 3 MVI A, 00H
L1 : ouT 0COH
INR A
JNZ L1
JMP START

CALCULATION:
Amplitude:

Time Period:

RESULT: Hence the Saw-tooth wave is generated.

EXPERIMENT 18 STEPPER MOTOR CONTROLLER
a. Stepper motor at different speeds
Aim: To write an ALP for run a stepper motor at different speeds in two directions and observe
the actions which takes place.
Apparatus:
1. Micro-85EB 8085 uP kit
2. Stepper motor Interface Module
3. Bus card
Source Code:

START: LXI H, LOOKUP

MVI B,04
REPT: MOV AM

OuUT 0COH

LXI D, 0303H
DELAY NOP

DCX D

MOV AE

ORA D

JINZ~ (DELAY

INX H

DCR B

INZ REPT

JMP START
LOOK UP:

DB: 09 05 06 0A

Procedure:
1. Enter the above program starting from 4100h. Connect the stepper motor in portl and
execute.
2. The stepper motor can be rotates. Speed can be varied by varying the count at DE pair.
3. Direction ¢an be varied by entering the data in the LOOK UP table in the reverse order.

b. Stepper motor at different angles

Aim: To write an ALP for run a stepper motor for required angle within 360°, which is

equivalent to 256 steps.

Apparatus:
1. Micro-85EB 8085 uP kit
2. Stepper motor Interface Module
3. Bus card

Source Code:

LOOK
DB :09 05 06 0A
END: HLT

Procedure:

1. Enter the above program. Connect the stepper motor in portl and execute.
2. By eonverting the required steps in decimal to hex and entering the hex data at 4101h.

3. The motor rotates for so much steps and then stops.

C. Stepper motor at both directions

Aim: To write an ALP for run stepper motor in both forward and reverse directions with delay.
Apparatus:

1. Micro-85EB 8085 uP kit

2. Stepper motor Interface Module

3. Bus card
Source Code:

START: MVI C,20H
FORWD: LXI H, FORLOOK

CALL ROTATE

DCR C

INZ. FORWD

CALL STOP

MVI C,20H
REVES: LXI H,REVLOOK

CALL ROTATE

DCR C

JNZ__ REVES

CALLSTOP

JMP © START
ROTATE.: MVI B.,04H
REPT: MOV AM

OUT COH

LXI D,0303H
LOOPI: DCX D

MOV AE

ORA D

INZ LOOPI1

INX H

DCR B

INZ REPT

RET

STOP: LXI D, FFFFH
LOOP2: DCX D
MOV AE
ORA D
INZ L.OOP2
RET
FORLOOK

DB 09H O05H 06H O0AH
REVLOOK
DB 0AH 0O6H 05H 09H
END
Procedure:

1. Enter the above program starting from 4100h.
2. Connect the stepper motor in portl and execute.
3. Observe that the stepper motor runs in forward direction and reverse direction

continuously with a delay.

RESULT:

Hence the stepper is rotated in different directions and different angles and different speeds.

EXPERIMENT 19 8279- PROGRAMMABLE KEYBOARD/DISPLAY INTERFACE
Aim: To display the rolling message “HELP US” in the display.
Apparatus:

1. Miero-85EB 8085 nP kit

2. 8279 Interface Module (Key board & Display)

3. Bus card

Equivalent: CNT EQU C2ZH

DAT EQU CoH
POINTER EQU 412CH

Source Code:
START: LXI H, POINTER
MVI D, OFH
MVI A, 10H
OUT CNT
MVI A, €CH
OUT CNT
MVI A, 90H
OUT CNT
LOP: MOV AM
OUT DAT
CALL DELAY
INX H
DCR D
INZ LOP
JIMP START
DELAY: MVI B, AOH
LOP1: MVI C,IFrH
LOP2: DCR C
JINZ LOP2
DCR B

JNZ LOP1
RETL

POINTER: FF FE FE EE
EP FE FF FE
98 68 7C C8
1C 29 FF FE

Procedure:
1. Enter the above program starting from 4100h.
2. The data fetched from address 412Ch and display in the first digit of the display.
3. The next data is displayed in the second digit of the display.

4. Atime delay is given between successive digits for a lively display.

RESULT:
Hence the message HELPUS i1s displayed.

