WORK INSTRUCTION

1.0 EXPERIMENT NO: BS/PHP101/03 2.0 NAME OF EXPERIMENT: DISPERSIVE POWER 3.0 OBJECTIVE: DETERMINATION OF DISPERSIVE POWER OF THE MATERIAL OF A PRISM

4.0 PRINCIPLE: If A is the angle of the prism and ∂_m is the minimum deviation of a ray of monochromatic light refracted through the prism in a principle section, then the refractive index of the material of the prism μ_{λ} for the light of the given wavelength is expressed by

if μ_1 and μ_2 are the refractive indices of the material of the prism for lights of two given colours and μ is the refractive index of the material for the mean colour between the two given colours, then the dispersive power of the material of the prism ω between the wavelength region considered is given by

$$\omega = \frac{\mu_1 \sim \mu_2}{\mu - 1} \qquad (2)$$

Equations (1) & (2) are used as the working formula for the determination of the dispersive power of the material of a prism.

Procedure :

Using spirit level, level the base of the spectrometer, prism table, telescope and collimator.

At the minimum deviation position of prism for yellow line, adjust the telescope and collimator for parallel rays

Determine the vernier constant (V.C.) of the spectrometer

Place the prism perpendicular to the collimator axis

There will be two refracted images in two sides of the prism

Touching the cross-wire on the image in both sides and take the reading of two vernier position Determine the angle (A) of the prism from tab. 2

Place the prism at the minimum deviation position and take the reading of two vernier position for three different colours

Take direct reading of the telescope

Determine the angle of minimum deviation from tab. -5

Determine the refractive index of three different colours

Determine the dispersive power of the material of the prism using equn. -2

Tabulation:

TABLE-1

Determination of vernier constant (V.C.) of the spectrometer divisions(say m) of the vernier scale=..... divisions (say n) of the main scale

Value of 1 smallest circular	Value of 1 division of the vernier	Vernier constant of the
scale division	scale	spectrometer v.c.
(l_1) (min/sec)	$\frac{n}{m}$ (min/sec)	$(1-\frac{n}{m}) \ge l_1$ (min/sec)

					nd				
Vernier	Reading of	of the 1 st pos	sition of	Reading o	f the 2 nd po	sition of	2A =	Mean	Angle
scale	the telescope		the telescope		(a~	2A	(A) of		
		1			1		b)	(deg)	the
	Main	Vernier	Total	Main	Vernier	Total	(deg)		prism
	scale	no. v _s	$m_{s} + v_{s}$	scale	no. v _s	$m_{s} + v_{s}$			(deg)
	reading		x v.c	reading		xv.c			
	ms		(deg).	ms		(deg).			
	(deg)		(a)	(deg)		(b)			
1 st Vernier									
2 nd Vernier									

TABLE-2 Determination of the angle (A) of the prism

	Reading o	f the telescope	at the position	of minimum d	eviation :	
Colour of	Vernier	No. of obs.	Main scale	Vernier no.	Total	Mean
the line	scale		reading m _s	Vs	$m_{s+} v_s x v.c$	reading
			(deg)		(deg).	(deg).
	1 st Vernier	1	/			· • • • •
		2				d_1
Red		3				
	2 nd Vernier	1				
		2				d_2
		3				
	1 st Vernier	1				
		2				d ₃
Yellow		3				
	2 nd Vernier	1				
		2				d_4
		3				
	1 st Vernier	1				
		2				d_5
Blue		3				
	2 nd Vernier	1				
		2				d_6
		3				

TABLE-3

]	TABLE-4		
		Direct read	ing of the telesc	ope:	
Vernier scale	No. of obs.	Main scale	Vernier no. v _s	Total	Mean reading
		reading m _s		$m_s + v_s x v.c$	(deg).
		(deg)		(deg).	
	1				
1 st Vernier	2				d ₇
	3				
	1				
2 nd Vernier	2				d_8
	3				

TABLE-5

Determination of angle of minimum deviation:

Colour of the line	Angle of minimum	Mean δ_m (deg).	
	1 st Vernier	2 nd Vernier	
Red	$d_1 \sim d_7$	$d_2 \sim d_8$	
Yellow	$d_3 \sim d_7$	$d_4 \sim d_8$	
Blue	$d_5 \sim d_7$	$d_6 \sim d_8$	

TABLE-6

Determination of dispersive power of the material of the prism:

Angle (A) of	Colour of the	$\delta_{\rm m}$ (deg).	Refractive	Dispersive power
the prism	line		index	$ω = (μ_1 ~ μ_2)/(μ-1)$
(deg				
	Red		μ_1	
	Yellow		μ	
	Blue		μ_2	

Discussion:

You have to write all the difficulties you faced during the experiment and their remedies. Also you have to mention some way out that one should adopt during the practical to have a better result.

Viva voice: go through the chapter of young's modulus and elasticity from these books.

- 1) OPTICS Ghatak
- 2) OPTICS K. G. Majumdar
- 3) ADVANCED PRACTICAL PHYSICS- Ghosh & Majumdar
- 4) PRACTICAL PHYSICS- Rakshit, Chatterjee & Saha