LABORATARY MANUAL

EMBEDDED LAB

- THE NEOTIA
UNIVERSITY

S 3T Hedig

DEPARTMENT
OF
ROBOTICS & AUT OMATION ENGINEERING

9,
10. Temperature Sensor Interfacifle - «ox 55 2 s cusis 05 5 65 505 w5 o8 5 o5 sawas
1 1, Biepper Motorf INCriat it W « i oo o 5 5 w0 o5 5 Seepsss 5 § &
12. EPROM Interfacingoc i e e

13. Real Time Clock Interfacing...................ooocoi i,

EMBEDDED LABORATORY

LIST OF EXPERIMENTS

. Study of ARM evaluation System.coovvcninsinens o .. (AR . ..
CLED Interfacing... ..o
CFlashing of LEDs.
CADC INterfacing. ..o
CDAC INMErTacing. ..o
.DC Motor Interfacing. e e
B 0 0
. Keyboard Interfacing.............. 00 o,

LD Trterf@eime: i s o sus wos 05 2 o vasmsnss v 2is e 99 3 o5 wasassss 5 505 s 9 3 45 vasey

11
I3
15
18
21
23
25
27

30

SYLLABUS

EMBEDDED LABORATORY LTPCO0032

OBJECTIVES:
The student should be made to:

e Learn the working of ARM processor

e Understand the Building Blocks of Embedded Systems

e Learn the concept of memory map and memory interface
e Know the characteristics of Real Time Systems

e Write programs to interface memory, I/Os with processor
e Study the interrupt performance

LIST OF EXPERIMENTS

(A

w 0 ~N o O A W N

Study of ARM evaluation system

. Interfacing ADC and DAC.

. Interfacing LED and PWM.

. Interfacing real time clock and serial port.

. Interfacing keyboard and LCD.

. Interfacing EPROM and interrupt.

. Mailbox.

. Interrupt performance characteristics of ARM and FPGA.
. Flashing of LEDS.

10. Interfacing stepper motor and temperature sensor.

11. Implementing zighee protocol with ARM.

OUTCOMES:
At the end of the course, the student should be able to:

e \Write programs in ARM for a specific Application

e [nterface memory and Write programs related to memory operations

¢ |Interface A/D and D/A convertors with ARM system

e Analyse the performance of interrupt

o Write programmes for interfacing keyboard, display, motor and sensor.
o Formulate a mini project using embedded system

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS (3 students per batch)

1.
2.
3.

Embedded trainer kits with ARM board 10 No.s
Embedded trainer kits suitable for wireless communication 10 No.s
Adequate quantities of Hardware, software and consumables

1. STUDY OF ARM EVALUATION SYSTEM
AIM :
To study the ARM Evaluation processor TM4C123GXL.

TM4C123GXL LanchPad :

TM4C123GXL is the 32-bit ARM Cortex — M4 80 MHz CPU, 256 kB Flash / 32 kB
EEPROM, 12-bit SAR adc, Comparators, Timers, DMA, [12C, UART and Integrated Full
& Low speed USB 2.0.

SOFTWARE:

Energia is the open source software to program for TM4C123GXL. This is IDE
(Integrated Development Environment) for programming, compiling and debugging.
Software has facility to compile the program, upload the program into the target board.

Serial monitor is useful to debug the code in real time response of hardware and
composed circuit.

TM4C123GXL PIN OUT DIAGRAM:

TIVA™ C Series
TM4C123G LaunchPad

{} TEXASINSTRUMENTS

Energia

1°C (TWI)

Pinout Diagram ver .o

SDA() - =
| GND 000 |
| 6ND 0 |
I T

TMAC123GXL — OVER VIEW

Power Select USB Connector
Switch (Power/ICDI) Green Power LED

Tiva
TM4C123GHEPMI
Microcontroller

e L

Um

uz TVTIVRINION o
DEimeG

OEVICE DEUG o -

Bew® ,
R gy HETS =
USE Micro-A~B | ®ET T EZy
Connector J = .o &
(Device) ! TCK TW5 100
www i comyounchpad
EK-TM&CIZ3GXL REV A
_ BN
b b | ' YDOC
| : 7 M5 GND I o & "inl
Tiva C Series G
LaunchPad P 5 Fpa o - """}'j . R q-:” Pie
BoosterPack XL — i , & roe plo <}
'

Interface (J1, J2, J3,
and J4 Connectors)

PO& i 4
POT P33 G'Q.' E
PFL PAT & [;a !
MSP430
LaunchPad-Compatible

BoosterPack Interface

User Switch 1 User Switch 2

Tiva C Series TM4C123G LaunchPad Evaluation Board

Reset Switch

RGBE User LED

Tiva C Series
LaunchPad
BoosterPack XL
Interface (J1, J2, J3,
and J4 Connectors)

Tiva
TNAC123GHEPMI
Microcontroller

M3P430

LaunchPad-Compatible
BoosterPack Interface

TM4C123G XL — INTERNAL STRUCTURE DIAGRAM

Coor tex V4 Systick
Aystem Bus Interface HYIC
oA
GPIOPorta [®TI*%| GrioPonE

g [Fag

PAS/SSIOTE — il e e e — FES

PaAiSSI0Rx —| . — FE4
PAZSSI0CT:] [FEamacoscL

— Fouwr '

Fis 10T — a5 e - CAN Z0 — FBI

BAOMIOR: —| | | — FEN

pe7 | GRIC Pontc el = [GPIO PortD L o

PCE — — FL6

Py — UZE 20 g Turelwe — PLs

P — Titets — P4

PCUTDOSWO — | - — FLA

PCTD] — = ITAG Six — PL2

FOLTMSISWDID — | . fid-hit wide [PLD1

PCO/TCKIS WOLE, — » — FLO

GFIOFuE ool | o [GFIOFortF
PE5 —
FE4 — ADC | L0 snialog — PF4
EE — 2 channels 2 ompar atars — IE%
= 12 input BE
PE1 — [2hts [T || Tro WM — FFI
FED —[_| Modules L_I— FHI

Advanced High Performance Bus % % Advanced Peripheral Bus

ENERGIA SOFTWARE SCREEN:

e T

ﬂ; sketch_jul29a | Energia 0101ECO16 -

File Edit Sketch Tools Help

l sketch_jul29a

woid setup ()
{

£/ put your setup code here, Co run once:

'

woid. loop()
{

A4 put your main code here, to run repeatedly:

LaunchPFad (Tiva Chuw tmac

WHZ) on COMZZ

RESULT :
Thus the study of ARM Evaluation is completed.

2. LED INTERFACING

AlM
To interface LED with ARM processor.

APPARTUS REQUIRED

1. ARM Processor EK -TM4C123GXL.
2. Computer with energia software.

3. LED.

4. Resister 1K.

THEORY

ARM processor is used for LED ON and OFF. Digital out of processor is connected to the
LED. When digital out is HIGH, LED gets ON, When digital out is LOW, LED gets OFF. Delay is
used in the program in between LED on and off to view the led change of state from ON to OFF.

PROCEDURE

1. Connections are given as per the circuit diagram.
2. Upload energia program into the ARM processor.
3. Observe the LED ON and OFF like blinking led.

PROGRAM

void setup()
{

pinMode(PA_4, OUTPUT);
}

void loop()

{
digitalrite(PA_4,HIGH);
delay(100);
digitalVrite(PA_4,LOW);
delay(100);

INPUT OUTPUT

PORT PA_4, HIGH LED ON
PORT PA_4, LOW LED OFF

CIRCUIT DIAGRAM : LED INTERFACING
ARM PROCESSOR

JZ
— 1 |GND
= — 2 |PB2

GND — 3 |PEO

— 4 |PFO

-1 5 |Reset

— 6 |PB7

— 7 |PB6

8 |rPa4

— 9 |PA3

LEDSZQ‘_ 10 | PAZ
ém
=GND

RESULT
Thus the interfacing of LED with ARM proce ssor is done successfully

3. FLASHING OF LED
AIM
To perform the flashing of LEDs with ARM processor
APPARATUS REQUIRED

1.ARM processor -TM4123GXL
2.Separate 5V power Supply
3.LEDs - 5nos

4 Bread Board

5.connecting wires

THEORY

o LEDs are connected with Arm processor by individual digital pin. Program is
written to ON LEDs one by one then off all the LEDs at a time, then ON the LEDs one
by one, the same loop is operated. So the flashing of leds is done.

PROCEDURE

1.Connections are given as per the circuit diagram

2.energia program is loaded into the ARM processor

3.0utput is observed in LEDs

4. LEDs are gets ON one by one, then at a time all the LEDs are turned OFF, then
LEDs are get ON one by one loop is contined

PROGRAM

int tonDelay=1000;
int toffDelay=500;
int LED1=PA_2;
int LED2=PA_3;
int LED3=PA_4;

void setup()
{
pinMode(LED1,OUTPUT);
pinMode(LED2,OQUTPUT);
pinMode(LED3,OUTPUT);

}

void loop()

{
digitalnte(LED1 HIGH],

delay (tonDelay);
digitalVWnte(LEDZ2 HIGH]),
delay (tonDelay);
digitalVWnte(LED3 HIGH]),
delay (tonDelay),
digitalVWnte(LED1 L CW),
digitalWnte(LED2 L W),
digitalVWnte(LED3 LW,
delay(toffDelay);

CIRCUIT DIAGRAM : FLASHING OF LED

L=
2%

GND
FB2
PEOD
PFO
Reset
PBY
PB&
FA4
PA3
PA2

'7

OO~ WMKN =

=
O

LEDEE\.“ LED*, Z,Q‘ LED N

—AAM
=AM
vy

RESULT
Thus the flashing of LEDs by ARM processar is performed and verified.

4. ADC INTERFACING WITH ARM PROCESSOR
AlM
To interface convert Analog signal in digital form using ADC in ARM processor.

APPARATUS REQUIED
1. ARM processor, EK-TM4C123GXL
2. Computer with energia software.
3. 1kQ) Resistor — 5 nos
4. Bread Board.
5. Connecting wires

THEORY

Five 1kQ resistors are connected in series. 5V is supplied and the circuit is closed by the
ground. 3V is applied across 5 1k() resistors, so each resistor drops 1v, totally Sv. Test point in
ground, it produces 0 analog voltage, From ground after the first resistor produces 1 analog volt,
after the second resistor produces 2 analog volt, after the third resistor produces 3 analog volt,
after the fourth resistor produces 4 analog volt, all these test point voltage nodes are connected
with the analog IN pin of ARM processor one by one. Program is written to read analog value in
analog pin using analog read syntax and this received scale value in program is converted by
multiplication factor and can be displayed as 1,2,3,4 volt as digital numbers. Finally analog
voltage across the resistors is displayed as digital voltage value numbers in ARM processor
serial monitor.

PROCEDURE
1. Connections are given as per the circuit diagram.
2. ADC energia program is loaded in ARM processor.
3. Open the serial monitor in energia
4. In circuit connect analog pin to test point - gnd, 1, 2, 3, 4.
5. Observe the respective digital voltage values in serial monitor as 0,1,2,3,4

PROGRAM

int analogPin = PE_2;
int volt;

int val = O;

void setup()

{
Serial.begin(9600);

}

void loop()

{
val = analogRead(analogPin);
Serial.print("scale value = ");
Serial.printin{val);
Volt=wval/1000;
Serial.print(volt);
Serial.printin(" volts");
delay(1000);

CIRCUIT DIAGRAM : ADC INTERFACING WITH ARM PROCESSOR

ARM PROCESSOR 5V
J3 1KQ
5V 1 4\;"
GND| 2 —L_cnp ~
PDO| 3 — = ~ 3 1K
Po1| 4 - L ——
FD21 5 — \"""-.H 1KD
rp3| 6 \'} ~
PE1| 7 - g2V
PE2| 8 |— Mo N 1Ko
ANALOG IN 4
PE3| 9 \ 1v
PF1 110 p— \ 1KD
oV =
INPUT OUTPUT
AMNALOGWVALLE OlGITAL VALLE
(Mutimeter) (energia serial manitar)
[E0IN {
1 1
2 2
3 £
1 1
RESULT

Thus the Conversion of Analog to Digital is performed and verified with ARM processor
successiully

5. DAC INTERFACING WITH ARM PROCESSOR

AlM
To interface and convert Digital to Analog using DAC in ARM processor.

APPARATUS REQUIED

1. ARM processor, EK-TM4C123GXL
2. Computer with energia software.

3. Voltmeter (0-20)v or Multimeter

4. Connecting wires

THEORY

Digital scale value in program is uploaded to ARM processor. This value is passed to
digital to analog converting pin using analog write program line, so equivalent digital value is
obtained at the output of that pin. This is monitored by Voltmeter connected across the same pin
with ground.

PROCEDURE

1. Connections are given as per the circuit'diagram.

2. DAC energia program is loaded in ARM processor.

3. In circuit connect digital to analog pinto + terminal of voltmeter
4. Another end of voltmeter to be connected with ground.

5. Observe the respective analog voltage in voltmeter.

PROGRAM - FIXED VALUE INPUT QUTPUT
int digitalscalevalue =85; 85 1 volt
int analogpin=PB_2; 12‘1100 gvo:t
void setup() volt
{
Serial.begin(9600);

pinMode(analogpin, CUTPUT);
}
void loop()
{

analogWVrite(analogpin, digitalscalevalue);

Serial.printin{ digitalscalevalue);
}
PROGRAM - VARIABLE VALUE INPUT QUTPUT

5 0.1 volt

int digitalscalevalue =0; 10 0.2 volt
int addvalue = 5; 15 0.3 volt
int analogpin=PB_2; . .
void setup() ‘ s
{ 255 3.3 volt

pinMode(analogpin, QUTPUT);
h

11

void loop()

{

analog\rite (analogpin,digitalscalewvalue),

delay(30);

digitalscalevalue = digitalscalevalue +
addwvalue;

if (digitalzscalevalue =255]

{

digitalscalevalue =0,
}

}

CIRCUIT DIAGRAM : DAC INTERFACING WITH ARM PROCESSOR
ARM PROCESSOR

GND
FB2
PED
PFD
Reset
FB7
PB6
PA4
PA3
PAZ

= Voltmeter
- +

= o
oPLONOOEWN =2 5

RESULT

Thus the Conversion of Digital to Analog is performed and verified with ARM processaor
successfully.

6. DC MOTOR SPEED CONTROL (PWM)

AlM
To interface the DC motor with ARM processor and perform the speed control.

APPARTUS REQUIRED

ARM Processor, EK-TM4C123GXL.
BC547.

12 V DC Motor.

12 V Power supply.

LED.

0. Resister 1K.

o sl R g

THEORY

Pulse width modulation is digital sighal changing high and low with respect to time. The
time is varying for high state and low state. The low state is less time dc¢ motor is low speed.
The high is higher then low state dc motor run high speed.

PROCEDURE

Connections are given as per the Diagram.

For LOW speed : Set ON time 100ms and OFF time 10ms.
Upload energia programe to ARM processor.

Observe motor speed.

For HIGH speed : Set ON time 10ms and OFF time 100ms.
Upload energia programe to ARM processor.

Observe motor speed.

Fods D145 G B

PROGRAM

void setup()

{
/I put your setup code here, to run once:
pinMode(PA_4, OUTPUT);

}

void loop()

{
digitalVrite(PA_4,HIGH);
delay(10);
digitalVrite(PA_4,LOW);
delay(100);

}

13

CIRCUIT DIAGRAM: DC MOTOR SPEED CONTROL (PWM)
ARM PROCESSOR

J2

7

||
WO NOOA~WN =

—

GND
PB2
PEOD
PFO
Reset
PBY
PB6
PA4
PA3
PAZ

+12 'V
DC MOTOR

BC547 PIN DETAIL

| &
go(b BASE

_| A
1. EMITTER ',

COLLECTOR % 1

W
LR i\

2
3

INPUT:

For LOW speed:
HIGH tirme = 10ms
LCW time = 100m s

RESULT

Thus the interfacing of DC motor waith ARM processor is done successfully and speed

control of DT motor is performed.

= GMD

QUTPUT:

For HIGH speed:
HIGH time = 100 ms
LOW time = 10msCIRCUIT DIAGRAM

14

7. IMPLEMENTING INTERRUPT IN ARM PROCESSOR

AIM
To implement interrupt in ARM processor.

APPARATUS REQUIRED
1. ARM processor, EK-TM4C123GXL
2. Computer with energia software.
3.LED -3 nos
4. Bread Board.
5. Connecting wires

THEORY

Two interrupt ports are available in ARM processor. Two interrupt ports are
PUSH1, PUSH2. PUSH1 is linked with PF4 and PUSH2 is linked with PFO, so external
switch is to be connected with PF4 to trigger the PUSH1 interrupt, and PFO for PUSH2.

SW1 and SW2 switch are present‘in the ARM target board, SW1 can be used
instead of connecting external switch to PF4 to trigger PUSH1 interrupt. SW2 can be
used instead of connecting external switch to PFO to trigger PUSHZ2 interrupt.

These interrupts are initiated on RISING or FALLING of signal which is to
provided through switches and as mentioned in program in “attachinterrupt” function.

PROCEDURE

. Connections are given as perthe circuit diagram.

. Program is uploaded to ARM processor.

. Output is verified in LEDs.

. The main program execution is observed in Red and Green Leds continuously
blinking.

. When pressing External interrupt switch Yellow Led is glowing for some time due
to interrupt is initiated.

A WN =

a1

PROGRAM

int ledRed=PE_T;
int ledGreen=PE_2;
int ledYellow=PE_3;
int interrCount=0;

void setup()

{
pinMode(ledRed, OUTPUT);
pinMode(ledGreen, OUTPUT);
pinMode(ledYellow, OUTPUT),

15

digitalWrite(ledRed, LOW);
digital\Write (ledGreen, LOW);
digitalWrite(ledYellow, LOW);

pinMode(PUSH2, INPUT_PULLUP);

attachinterrupt(PUSH2, interruptBlink, RISING);
}

void loop()
{

interrCount++;

digitalVWrite (ledRed, HIGH);
digital\Write (ledGreen, LOW);
delay(300),
digitaWVrite(ledRed, LOW);
digitaWVrite(ledGreen, HIGH);
delay(300);

if (interrCount ==10)
{

interrCount = 0;
digitalWrite(ledYellow, LOW);

}

¥
void interruptBlink()

digitalWrite(ledYellow, HIGH);
}

16

CIRCUIT DIAGRAM : INTERRUPT

ARM PROCESSOR

J2
GND
r 1 | GND
; — - 2 |PB2
Switch — 3 |PED
Vbus o= 4 |PFO
(5V)
1K =1 5 |Reset
— 6 |PB7
= = 7 |PBb
8 |PA4
RED g |PA3
GREEN
LEDEZ‘Q; LED [10 | PA2
e \:‘TELLDW
§ LED
illﬁ 1K 1K
~ GND
INPUT

HIGH and LOWY signal to Red and Gzreen Led
HIGH signal to Yellow Ledwhen interrupt is triggered

QUTPUT

Fed and Green Led continuously blinking
Yellow led blinking when External interrupt switch is pressed.

RESULT

Thus the implementation of interrupt is performed in ARM processor,

17

8. KEYBOARD INTERFACING WITH ARM PROCESSOR
AIM

To interface keyboard with ARM processor

APPARTUS REQUIRED

1. ARM Processor EK -TM4C123GXL.
2. Computer with energia software.
3. 3x3 matrix keyboard.

THEORY

Keyboard is scanned and the pressed key is detected then it is printed. When the
columns pins of ARM processor is set in output mode, Sv is supplied by default to this
pins. 10k resistor is connected in each column and another end of all this resistor is
connected to ground. To start scanning, Column1.is set as high, remaining columns set
as low, so 5v is available in column1 alone. When scanning all the rows, if any key is
pressed in row1 will received Sv in row1, so columni1 row1 key is the pressed key, it is
assumed as value of this position is 1, so 1 is printed. If row2 key is pressed, Sv in
column1 is received in row2, so the pressed key is column1 row2, it is assumed as 4 as
it is the 3x3 matrix, this process is continued to row3. Next step column2 is enabled by
setting it as high and all the rows are scanned and it key values are assumed like 2,58
if it is pressed.

PROCEDURE

1. Connect 3 digital lines from ARM processor to row lines of keyboard

2. Connect another 3 digital lines from ARM processor to Columns line of keyboard
3. Upload energia program to processor.

4. Open serial monitor in computer.

o. Press any key in keyboard and observe that the same key is displayed in serial
monitor.

PROGRAM

int C1= PA_5;
int C2= PA_G;
int C3= PA_7;

int R1= PE_T1,;
int R2 = PE_2;
int R3 = PE_3;

void setup()

{
pinMode(C1, OUTPUT); // ¢1
pinMode(C2, OUTPUT); //¢c2
pinMode(C3, OUTPUT); //¢c3

18

pinMode(R1, INPUT); // 11
pinMode(R2, INPUT); //r2
pinMode(R3, INPUT); //r3
Serial.begin(9600);

}

void loop()
delay(150);

/f C1- column 1 scanning
digitalWrite(C1, HIGH);
digitalWrite(C2, LOW);
digitalVWrite(C3, LOW);

if(digitalRead(R1) == HIGH & digitalRead(C1) == HIGH)
{
Serial.printin("1"),
}
if(digitalRead(R2)==HIGH & digitalRead(C1) == HIGH)

Serial.printin("2"};

}
if(digitalRead(R3)==HIGH & digitalRead(C1) == HIGH)
{
Serial.printin("3");
}

// C2 - column 2 scanning
digitalWrite(C1, LOW);
digitalWrite(C2, HIGH);
digitalWrite(C3, LOW);

if(digitalRead(R1)==HIGH & digitalRead(C2) == HIGH)

{
Serial printin("4");
}
if(digitalRead(R2)==HIGH & digitalRead(C2) == HIGH)
{
Serial.printIn("5"),
}
if(digitalRead(R3)==HIGH & digitalRead(C2) == HIGH)
{

Serial.printin("6");

19

:

/f C3 - column 3 scanning

digitaMVrite(C1, LOW);
digitaMVrite(C2, LOW);

digitalWrite(C3, HIGH),

if(digitalRead(R1)==HIGH & digitalRead(C3) == HIGH)
{

Serial.printin{("7");

}

if(digitalRead(R2)==HIGH & digitalRead(C3) == HIGH)

Serial.printin("8");

}

if(digitalRead(R3)==HIGH & digitalRead(C3) == HIGH)

{
1

Serial.printin("9");

}

CIRCUITDIAGRAM: KEYBOARD INTERFACING

ARM PROCESSOR

—
w

5V
GND
PDO
PD1
PD2
PD3
EET
PE2
PES
PF1

alpfzl |||

WO~ RWN =

o

33V
PB5
PBO
PB1

PE4
PES
PB4
PAS
PAG
PAT

—
-

-

WO NDORWN =

4X4 MATRIX KEYBOARD

SRIr1 11111
L

C3

sw1 sw2 sw3
= —_ s
F o= 8 09
A\) 3
SWs SWB w7
1—8 c—4 [© - 55
R
ANV~] 5 5
SWo SWi10 SWi1
o— o
R
e[— ;
SW13 SwWi4 SW1s

INPUT

Key to be pressed in Keyboard

If 2 is pressed

RESULT

OUTPUT
2 —is displayed in serial monitor

Thus the keyboard interfacing with ARM processor is done and pressed key is
verified successfully.

20

9. LCD INTERFACING WITH ARM PROCESSOR

AIM
To interface LCD with ARM processor and display the text.

APPARATUS REQUIRED

1. ARM processor - EK-TM4C123GXL
2. Computer with energia software
3. LCD 16x2

4. 10k} variable resistor — 1.

9. Separate 5V supply.

THEORY

VSS - GND

VDD - 5V (separate supply not from ARM processor)

VO -3 wires 10kQ pot, top wire to Sv, bottom wire to ground, middle wire to VO
RS — to arm processor digital pin

RW —to GND

E — to arm processor digital pin

D4,D5,D6,D7 - to arm processor digital pin

To glow up internal light of LCD
A — Anode to 5V supply
K — Cathode to GND

VO - connected to 10k pot, this is used to change brightness of LCD display.
ARM processor send RS-Reset and E-Enable signal to LCD display.
Then it sends the 4 bit digital data to LCD, to display text.

PROCEDURE

1. Connection are given as per the circuit diagram.

2. Separate S5V supply to be used in LCD display, ARM processor GND to connected
to GND of separate Sv power supply.

3. Varying 10kQ pot in VO brightness of LCD is tuned.
4. LCD display program in energia is loaded to the ARM processor.
5. Observe the text displayed in LCD display

Note:

***sketch=>add file+=liquid crystal.h &liquid crystal.cpp™*

21

CIRCUIT DIAGRAM: LCD INTERFACING

LCD 16x2

ARM PROCESSOR

8388388 uw

J1

-
(5]
&
5

3.3V
PBS
PBO
PB1

PE4
PES
FB4
PAS

ol 11

7
D&
D5
D4

PAG

11{10]e |8 |7 [6 |5

5V Separate
supply

10K

RS

oL~k WN =

PAT

—

INPUT
“LCD TEST” in row0
‘EMBEDED LAB” in row1

PROGRAM

#include <LiquidCrystal.h>

int RS = PA_Y;

int EN = PA_B;

int D4 = PA_5;

int D5 = PB_4;

int D6 = PE_5;

int D7 = PE_4;

LiquidCrystal lcd(RS,EN,D4,D05,06,D7);
void setup()

lcd begin(186, 2);

}
void loop()

led.setCursor{0, 0);
led.print("LCD TEST"),

led .setCursor(0, 1);
led.print("EMBEDED LAB");

}
RESULT

Thus the interfacing LCD display with ARM processor is done and text is displayed

in LCD.

OUTPUT
LCD TEST
EMBEDED LAB

10. TEMPERATURE SENSOR WITH ARM PROCESSOR

AIM
To interface temperature sensor with ARM processor and display the temperature.

APPARATUS REQUIRED

1. ARM processor, EK-TM4C123GXL
2. Computer with energia software.

3. Temperature sensor — LM35

4. Bread Board.

5. Connecting wires

THEORY

LM35 temperature sensor has 3 pin Sv,itemp out, GND. Out pin of sensor
connected to analog pin of ARM processor. In energia program is written to read analog
pin value and this scale value is multiplied with factor to get temperature value in
Celcius. It can be observed in serial monitor of energia

PROCEDURE

1. Connections are as per the circuit diagram.

2. Present room temperature is displayed in serial monitor.

3. Using heating medium temperature is increased around the LM35 temperature
Sensor.

4. Observe the increase in temperature in serial monitor.

PROGRAM

float tempC,

int reading;

int tempPin =PE_3;
int INTERNAL:

void setup()

{
analogReference(INTERNAL);
Serial.begin(9600);

}

void loop()

{

reading = analogRead(tempPin);
tempC =reading / 9.31;
Serial.printin(tempC),
delay(1000);

23

CIRCUIT DIAGRAM: TEMPERATURE SENSOR

ARM PROCESSOR
J3

LM35

oV
GND
PDO
PD1
PD2
PD3
PES
PE2
PE3
PF1

+5v| | |GND

DATA OUT

WO ~NOOPAEWN =

—

NPUT
Apply Heat to Temperature sensor

QUTPUT
Increase in temperature is observed in serial monitor

RESULT
Thus the interfacing of temperature sensor s done and temperature changes are
observed.

11. STEPPER MOTOR INTERFACING
AIM
To perform a speed control of stepper motor using ARM processor.

APPARATUS REQUIRED:

1. ARM processor TM4123GXL

2. Stepper motor with driver module
3. Separate 5V power supply

THEORY:

A stepper motor is a brushless, synchronous electric motor that converts digital
pulses into mechanical shaft rotation. Every revolution of the stepper motor is divided
into a discrete number of steps, and the motor must be sent a separate pulse for each
step. Sequence 1100, 0110, 0011, 1001 sent to stepper from arm processor to rotate in
forward direction, sequence is reversed to rotate motor in reverse direction.

PROCEDURE:

. ARM processor USB is plugged with computer.

2. Digital output pins of ARM processor connected to the stepper motor driver.
3. Stepper motor sequence is programmed in energia.

4. Program is uploaded to ARM processor.
5
6

—

. LED will glow in the given sequence.
. Stepper motor rotation is observed.

PROGRAM:

int 1 =PE_1;
int §2 = PE_2;
int 83 = PE_3;
int 4 = PF_1;

void setup()

{
pinMode(S1,OQUTPUT);
pinMode(S2,0UTPUT);
pinMode(S3,QUTPUT);
pinMode(S4,0UTPUT),
inti=95;//5 meant for 5 ms, speed operation

}

void loop()
{

//Sequence 1100
digitaVVrite(S1,HIGH);
digitalMVrite(S2,HIGH);
digitaVVrite(S3,LOW);
digitalMVrite(S4,LOW);
delay(i);

25

/ sequence 0110
digitalWrite(S1,LOW);
digitalWrite(S2,HIGH);
digitalWrite(S3,HIGH);
digitalVrite(S4,LOW),
delay(i);

/f sequence 0011
digitalWrite(S1,LOW);
digitalWrite(S2,LOW);
digitalWrite(S3,HIGH);
digitalWrite(S4 HIGH);
delay(i);

/f sequence 1001
digitalrite(S1,HIGH);
digitalWrite(S2,LOW);
digitalWrite(S3,LOW);
digitalWrite(S4 HIGH);
delay(i);

}

CIRCUIT DIAGRAM: STEPPER MOTOR INTERFACING

ARM PROCESSOR

J3
stepper
B @ motor
GND | with
H o

PDO Separate module
PDA Power

Supply
PD2
PD3
PE1
PE2
PE3
PF1

Sy —d

Gnd—

s1]s2]s3ks4] fero

SOONOU RN

INPUT/OUTPUT

1. For forward rotation sequence 1100, 0110, 0011, 1001 is used.
2. For reverse rotation sequence 1100, 1001, 0011, 0110 is used.
3. For speed operation, delay is set to Sms.

4. For low speed operation, delay is set to 50ms.

RESULT:

Thus the stepper motor speed control is performed by interfacing stepper with ARM
processor.

26

12. EPROM INTERFACING

AIM:
To write and read data from EEPROM interfaced with ARM processor.

Apparatus required:

1. ARM processor TM4123GXL
2.24C02 - EPROM
3. 1k resistor — 2 nos

EPROM:

24C02C is a 2K bit Serial Electrically Erasable PROM with a voltage range of
4.5V to 5.5V. It has a single block of 256 x 8-bit memory, It means 256 address location
each has the capacity to store 8 hit, 256x8 = 2048 bit.

PROCEDURE:

1. ARM processor USB is plugged with computer.

2. SDA(5), SCL(6)pin of EPROM is connected with the SDA(PD_1), SCL(PD_0) pin of
ARM processor.

3. Pull up resistors each 1k ohms to be connected in SDA, SCL and ended with
common 5v.

4. WP of EPROM to be connected in GND to enable both write and read operation in
EPROM.

9. Load the program into ARM processor, open the serial monitor.

6. Setup part of program writes the data in EPROM memory from O to 256 address.

7. Loop part of the program reads the data from EPROM memory from O to 256 address
again and again.

8. Writing data and reading data output can be viewed in serial monitor of energia.

PROGRAM:

#include <Wire.h>

void setup()

Wire.begin();
Serial begin(98600);
Serial println{"Writen to memory!"):
for(inti=0; i < 100; i++)
{
eeprom_i2c write(B0O1010000, i, 'A'+i);
Serial. print(i);
Serial print(" - ";
Serial print("A'+1);
Serial.print("\n");
delay(100);

27

void loopf()
{
Serial printin("Feading from memory!");
forfint i =00 =7, i++)
{
byte r = eeprom_iZc_read(BO1010000, ij;
Serial.print(iy;
Serialprint("- "),
Serial.print(r);
Serial print{"n"y;
delay(500,
}
¥

void eeprom_iZ2c_write(byte deviceaddress, byte memory_addr, bhyte data)

{

VWire beginTransmission{deviceaddress),
Wire write(memaony_addr);

Wire write(data),

Viire .endTransmission();

+

byte eeprom_iZ2c_read{int deviceaddress, int memory_addr)

{

Wire beginTransmission{deviceaddress),
Wire write{memory addr);
Wire endTransmission(),

WirerequestFrom({deviceaddress, 1)
if(ire available())
return YWire read();
elze
return OxFF;
}

CIRCUIT DIAGRANM:

ARM PROCESSOR
J3

5V

_/

AD Vce
24C02

2K BIT

EEPROM
A2 SCL

5V

GND
(SCL) PDO
(SDA) PD1
PD2

PD3

PE1

PE2

PE3

PE1

A1

=] Ilf?

I
l
™

GND SDA

hdd

COXNO A WLN -

.

23

INPUT: QUTPUT:

MEMORY DATA MEMORY DATA
ADDRESS (WRITING) ADDRESS | (READING)
o ata] 0 BE
1 ala 1 ali
2 BY i BY
a it 3 s

25b 25k

SDA [Serial Data)

This is a bidirectional pin used to transfer addresses and data into and data out of the
device. It is an open drain terminal; therefore, the SDA bus requires a pullup resistor to
VCC (typical 10 kI | Ifor 100 kHz, 2k for 400 kHz).

SCL (Serial Clock)
This input is used to synchronize the data transfer from and to the device.

A0, A1, A2

The levels on these inputs are compared with the corresponding bits in the slave
address. The chip is selected if the compare is true. Up to eight 24C02C devices may
be connected to the same bus by using different Chip Select bit combinations. If AQ, A1,
A1 are 0,0,0, it is the first device, so combination of three line upto 1,1,1 eight devices
can be connected.

WP

This is the hardware write-protect pin. It must be tied to VCC or GND. If tied to Vcc, the
hardware write protection is enabled. If the WP pin is tied to GND the hardware write
protection is disabled.

DEVICE ADDRESSING:
Read/Write Bit

Chip Select
Confrol Code Bits

| | |
5 I 1 0| 1 0| A2 | A1| AD Rf‘uT.I’IACK
|

|
{ Slave Address 4[
Start Bit Acknowledge Bit

RESULT:

Thus the writing and reading the data from EEPROM with ARM processor is
performed

29

13. RTC INTERFACING WITH ARM

AlM:
To interface RTC (Real Time Clock — DS1307) with ARM processor.

Apparatus required:

1. ARM processor TM4123GXL
2. RTC — DS1307 with 3v battery
3. 1k resistor — 2 nos

RTC DS1307:

Real-time clock (RTC) counts seconds, minutes, hours, day of the week, date of
the month, month, and year with leap-year. Full binary-coded decimal (BCD)
clock/calendar and 56-byte, battery-backed, nonvolatile (NV) RAM for data storage.
Two-wire serial interface are SDA, SCL. The clock operates in either the 24-hour or 12-
hour format with AM/PM indicator. DS1307 has a built-in power sense circuit that
detects power failures and automatically switches to the battery supply.

PROCEDURE:

1. ARM processor USB is plugged with computer.
2. SDA(5), SCL{6) pin of DS1307 is connected with the SDA(PD_1), SCL(PD_0) pin of
ARM processor.

3. Pull up resistors each 1k ohms to be connected in SDA, SCL and ended with
common 5v.

. Load the program into ARM processor, open the serial monitor in energia.

. Setup part of program has settime function, this sets the seconds, minutes, hours,
day, date, month and year. This to be done only once when new RTC is used, then
settime to be comments because every time of program upload should not set time.

6. Loop part of the program reads the seconds, minutes, hours, day, date, month and

year from RTC memeory from 0 to 7 address again and again.

7. Reading calendar values can be viewed in serial monitor of energia.

0

RTC MEMORY ORGANISATION:

ADDRESS | BMT | Bit6 | Bits | B4 | Bit3 | Btz | Bit! | Bit0 | FUNCTION | RANGE
00H CH 10 Seconds Seconds Seconds 00-59
01H 0 10 Minutes Minutes Minutes 00-58

12 10H 1-12
0ZH 0 2% 10 Howr Hours Hours +AMIPH
24 PM/AM 00-23
03H 0] 0 0 0 | DAY Day 01-07
04H 0 0 10 Date Date Date 01-31
10 7
05H 0 0 il Shuis Month Month 01-12
06H 10 Year Year Yeaar 00-98
O7H outT | o | o0 | SQWE o0 [o | RrRst | RSO Control =
08H-3FH RAM 56 x 8 | DOH-FFH

a0

DS1307 BLOCK DIAGRAM

0

X1 Xz

OSCILLATOR
AND DIVIDER

A

SOW/AOUT —a-——

BAUARE WAVE
ouT

Voo —™
Voay ——=|
GHND —————f

SDA =

SERIAL BUS
INTERFACE

CONTROL
LOGIC

DORESS

T}

A
REGISTER

i

RTC

RAM
(56 X 8)

CIRCUIT DIAGRAM:

ARM PROCESSOR

5V

GND
(SCL) PDO
(SDA) PD1
PD2

PD3

PE1

PE2

PE3

PF1

5V

"

X1

40 " 4

co@~NonrN=alG

0 |]1§§

3V

(BAT)

4|GND

w
<
=2

L

RTC

Vece

X2 DS1307 sow

out
SCL

SDA

=

H

N

3 o

3l

INPUT:

setDS1307time(40,07,11,6,20,8,16);

feed parameters in program line as

seconds, minutes, hours, day, date, month, year
(this is sample values, current time value to be set)
40 — seconds

07 —minutes

11 — hours

6 — day (FRIDAY)

20 — date

8 — month

16 - year

PROGRAM:

#include "Wire.h"
#Hdefine DS1307_12C_ADDRESS 0x68

void setup()
Wire begin();

Serial. begin(9600);
// set the initial time here:

OUTPUT:

11:07:40 20/8/16 Day of week: Friday
11:07:41 20/8/16 Day of week: Friday
11:07:42 20/8/16 Day of week: Friday
11:07:43 20/8/16 Day of week: Friday
11:07:44 20/8/16 Day of week: Friday
11:07:45 20/8/16 Day of week: Friday

{1 DS1307 seconds, minutes, hours, day, date, month, year

//setDS1307time(40,07,11,6,20,8,16);

1

void loop()

{
displayTime(); / display the real-time clock data on the Serial Monitor,
delay(1000); // every second

1

/f Convert normal decimal numbers to binary coded decimal

byte decToBcd(byte val)
{

}

return((val/10*16) + (val%10));

/I Convert binary coded decimal to normal decimal numbers

byte bcdToDec(byte val)
{

}

return{ (val/16*10) + (val%16)),

void setDS1307time(byte second, byte minute, byte hour, byte dayOf\Wweek, byte dayOfMonth, byte

month, byte year)

{
/{ sets time and date data to DS1307

Wire beginTransmission(DS81307_12C ADDRESS);

Wire write(0); // set next input to start at the seconds register

Wire write(decToBed(second)); // set seconds

32

}

Wire write(decToBcd(minute)); // set minutes

Wire write(decToBed(hour)); // set hours

Wire write(decToBed(dayOfweek)); // set day of week (1=Sunday, 7=Saturday)
Wire write(decToBcd(dayOfMonth)); // set date (1 to 31)

Wire write(decToBecd(month)); / set month

Wire write(decToBcd(year)); // set year (0 to 99)

Wire.endTransmission();

void readDS1307time(byte *second, byte *minute, byte *hour, byte *dayCfiWeek, byte *dayOfMonth, byte
*month, byte *year)

{

}

Wire beginTransmission(DS1307_12C_ADDRESS);
Wire write(0); // set DS1307 register pointer to 00h

Wire. endTransmission();

Wire requestFrom(DS1307_12C_ADDRESS, 7):

// request seven bytes of data from DS1307 starting from register 00h
*second = bedToDec(Wire.read() & 0x7f);

*minute = bedToDec(Wire.read());

*hour = bedToDec(Wire.read() & Ox3f);

*dayOfWeek = becdToDec(Wire.read())
*dayOfMonth = bedToDec(Wire.read());
*month = bedToDec{Wire read());

*vear = bedToDec(Wire read());

void displayTime()

{

byte second, minute, hour, dayOfweek, dayOfMonth, month, year;

/f retrieve data from DS1307

readDS1307time{&second, &minute, &hour, &dayOfweek, &dayOfMonth, &month, &year);

/{ send it to the serial monitor
Serial. print{hour, DEC);

/f convert the byte variable to a decimal number when displayed

Serial print(":");
if (minute<10)

{
Serial. print("0");
1
Serial. print{minute, DEC);
Serial. print(*:");
if (second<10)
{

}
Serial. print(second, DEC);

Serial. print("");
Serial print{dayOfMonth, DEC);
Serial.print("/");
Serial. print{month, DEC);
(
(

Serial.print("0");

Serial. print("/");

Serial print{year, DEC);
Serial.print(" Day of week: ");
switch({dayOfWeek)

{

case 1:

]

33

Serial. printin("Sunday");
break;

case 2.
Serial.printin("Monday");
break;

case 3.
Serial.printin("'Tuesday";
break;

case 4.
Serial printin("Wednesday'");
break;

case 5.
Serial.printin("'Thursday");
break;

case 6:
Serial. printin("Friday");
break;

case 7.
Serial. printin("Saturday");
break;

}

SIMPLE PROGRAM - RTC

#include <Wire.h>
define dev_add 0x68
void setup()
{
Wire.begin();
Serial.begin{9600);
[/ "Writen to memory!"
{f Wiriting date in memory, one time is enough, if the date to be changed, It can be written again.
/{ eeprom_i2c_write{dev_add, 0, decToBcd(21));
// eeprom_i2c_write{dev_add, 1, decToBcd(36));
// eeprom_i2c_write{dev_add, 2, decToBcd(2));
// eeprom_i2c_write{dev_add, 3, decToBcd(3));
/{ eeprom_i2c_write{dev_add, 4, decToBcd{31));
// eeprom_i2c_write{dev_add, 5, decToBcd(8));
// eeprom_i2c_write{dev_add, 6, decToBcd{16));
1

void loop()

{
byte sec = eeprom_i2c_read(dev_add, Q);
sec = bed ToDec(sec);
byte minute = eeprom_i2c_read(dev_add, 1);
minute = bedToDec{minute);
byte hour = eeprom_i2c_read{dev_add, 2);
hour = bcd ToDec(hour);
byte day = eeprom_i2c_read(dev_add, 3);
day = bcdToDec({day);

34

byte date = eeprom_i2c_read(dev_add, 4);
date = bcdToDec(date);
byte month = eeprom_i2c_read{dev_add, 5);
month = bedToDec(month);
byte year = eeprom_i2¢c_read{dev_add, 6);
year = bedToDec(year);
Serial.printin{"HOUR : MIN : SEC DATE/MONTH/YEAR , DAY");
Serial.println{Stringthour) + " :" + minute + " : " +sec+" " +date + "/" + month + "/" + year+ ", " + day);
delay{5000);
1
byte decToBcd(byte val)
{
return{ {val/10*16) + {val%10));
}

byte bcdToDec{byte val)
{

return{ {val/16*10) + {val%16));
}

void eeprom_i2c_write(byte deviceaddress, byte memory_addr, byte data)
{

Wire.beginTransmission{deviceaddress);

Wire.write{memory_addr);

Wire.write(data);

Wire.endTransmission();

}

byte eeprom_i2c_read(int deviceaddress, int memory_addr)
{
Wire.beginTransmission{deviceaddress);
Wire.write{memory_addr);
Wire.endTransmission{);

Wire.requestFrom(deviceaddress, 1);
if(Wire.available()}

return Wire.read();
else

return OxFF;

35

Note: Writing date in memory, one time is enough, if the date to be changed can be written again.

TEST data stored and retrieved from RTC memory in RTC Memory order

Function | Address BCD Decimal
Retrieved | Converted
Sec 0 21 33
Min 1 24 17
Hour 2 18 12
Day 3 4 4
Date 4 49 31
Month 5 8 8
Year 6 22 16
OUTPUT:
Date retrieved to display in Date Time format order:
DATE | MONTH | YEAR | HOUR | MIN | SEC | DAY
3 8 16 12 17 33 | Wed
Address 4 5 6 2 il 0 3
Retrieved 49 8 22 18 24 21 4
BCD TO DEC 31 8 16 12 17 33 4
RESULT:

Thus the interfacing of Real Time Clock with ARM processor is performed and calendar value is

displayed.

36

