Template for Case Study based Lab Manual for
Higher Semester

DEPARTMENT OF CSE
EXPERIMENT LIST

CLASS: IB.TECH CSE

Semester: 05

SUBJECT: Machine Learning

Specialization: Machine Learning

Overview and Basic Instructions:

Machine learning : Machine learning is a subset of artificial intelligence in the field of
computer science that often uses statistical techniques to give computers the ability to
"learn” (i.e., progressively improve performance on a specific task) with data, without being
explicitly programmed. In the past decade, machine learning has given us self-driving cars,
practical speech recognition, effective web search, and a vastly improved understanding of
the human genome.

Machine learning tasks: Machine learning tasks are typically classified into two broad
categories, depending on whether there is a learning "signal" or "feedback” available to a
learning system: Supervised learning: The computer is presented with example inputs and
their desired outputs, given by a "teacher”, and the goal is to learn a general rule that maps
inputs to outputs. As special cases, the input signal can be only partially available, or
restricted to special feedback: Semi-supervised learning: the computer is given only an
incomplete training signal: a training set with some (often many) of the target outputs
missing. Active learning. the computer can only obtain training labels for a limited set of
instances (based on a budget), and also has to optimize its choice of objects to acquire
labels for. When used interactively, these can be presented to the user for labelling.
Reinforcement learning: training data (in form of rewards and punishments) is given only as
feedback to the program’s actions in a dynamic environment, such as driving a vehicle or
playing a game against an opponent. Unsupetrvised learning: No labels are given to the
learning algorithm, leaving it on its own to find structure in its input. Unsupervised learning
can be a goal in itself (discovering hidden patterns in data) or a means towards an end
(feature learning).

Inductive logic programming Inductive logic programming (ILP) is an approach to rule
learning using logic programming as a uniform representation for input examples,
background knowledge, and hypotheses. Given an encoding of the known background
knowledge and a set of examples represented as a logical database of facts, an ILP system
will derive a hypothesized logic program that entails all positive and no negative examples.

Inductive programming is a related field that considers any kind of programming languages
for representing hypotheses (and not only logic programming), such as functional programs.

Machine learning Approaches: Decision tree learning: Decision tree learning uses a
decision tree as a predictive model, which maps observations about an item to conclusions
about the item's target value. Association rule learning Association rule learning is a method
for discovering interesting relations between variables in large databases

Week 01 to week 02

1 Implement and demonstratethe FIND-Salgorithm for finding the most specific
hypothesis based on a given set of training data samples. Read the training data from a
CSV file

2 For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithm to cutput a description of the set of
all hypotheses consistent with the training examples

Week 03 to week 04

1 Write a program to demonstrate the working of the decision tree based ID3 algorithm.
Use an appropriate data set for building the decision tree and apply this knowledge to
classify a new sample.

2 Build an Artificial Neural Network by implementing the Backpropagation algorithm and
test the same using appropriate data sets.

Week 05 to week 06

1 Wite a program to implement the naive Bayesian classifier for a sample training data

set stored as a .CSV file. Compute the accuracy of the classifier, considering few test

data sets.

2 Assuming a set of documents that need to be classified, use the naive Bayesian

Classifier model to perform this task. Built-in Java classes/API can be used to write the
rogram. Calculate the accuracy, precision, and recall for your data set.

Week 07 to week 08

1 WWrite a program to construct a Bayesian network considering medical data. Use this
model to demonstrate the diagnosis of heart patients using standard Heart Disease
Data Set. You can use Java/Python ML library classes/API.

2 Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data
set for clustering using k-Means algorithm. Compare the results of these two
algorithms and comment on the quality of clustering. You can add Java/Python ML
library classes/API in the program.

Week 09 to week 10

1 [Write a program to implement k-Nearest Neighbour algorithm to classify the iris data
set. Print both correct and wrong predictions. Java/Python ML library classes can be
used for this problem.

Implement the non-parametric Locally Weighted Regression algorithm in order to fit data

points. Select appropriate data set for your experiment and draw graphs.

Week 11 to week 15 : Case Studies and Value Based Projects

1. Understand the implementation procedures for the machine leaming algorithms.
2. Design Java/Python programs for various Learning algorithms.

3. Applyappropriate data sets to the Machine Learning algorithms.

4. Identify and apply Machine Learning algorithms to solve real world problems.

1 Case Study 01
1. Business Case :
2. SDLC Process to be Followed: AGILE/ SPIRAL/ WATER FALL
3. Estimation Process to be Followed : SCHEDULE, SIZE and EFFORT
4. Design Standards To be Followed :
5. CODE Standards to be followed
6. Business Benefit:
2 Case Study 02
1. Business Case :
2. SDLC Process to be Followed: AGILE/ SPIRAL/ WATER FALL
3. Estimation Process to be Followed : SCHEDULE, SIZE and EFFORT
4. Design Standards To be Followed :
5. CODE Standards to be followed
6. Business Benefit:
3 Case Study 03

1. Business Case :

SDLC Process to be Followed: AGILE/ SPIRAL/ WATER FALL
Estimation Process to be Followed : SCHEDULE, SIZE and EFFORT
Design Standards To be Followed :

CODE Standards to be followed

Business Benefit:

O O L b

Total 16 Periods Outcomes (Week 1 to week 15)

QOutcome based Benefit:

gy —

Understand the implementation procedures for the machine learning algorithms.
Design Java/Python programs for various Learning algorithms.
Applyappropriate data sets to the Machine Learning algorithms.

Identify and apply Machine Learning algorithms to solve real world problems

Experiments Details and Lab Instruction for Week 01-02
WEEK-1 and Week 2
Experiment 01 and 02

. Course objectives: This course will enable students to

. Way of Handling the .CSV file

. Identifying and Process of Collection specific hypothesis-based training data

. Developing the version space from Specific Hypothesis and General Hypothesis.
. implement of the Candidate-Elimination algorithm

BWN-=2 =

. Description (If any):

. The programs can be implemented in either JAVA or Python.

. Data sets can be taken from standard repositories
https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

N =N

—

3. Problem Statement:

a) Implement and demonstrate the FIND-S algorithm for finding the most specific
hypothesis based on a given set of training data samples. Read the training data
froma .CSV file.

b) For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithm to output a description of the set of
all hypotheses consistent with the training examples

4. Experiment Study and Analysis Details:

To handle the .CSV file where all the trained data has been kept. To ldentify the most
required data among the collecting data for particular experiments. The examples are added
one by one; each example possibly shrinks the version space by removing the hypotheses
that are inconsistent with the example.

5. Solution Framework:
NA
Code and Design Standards:
Program:
a) Implement and demonstrate the FIND-S algorithm for finding the most

specific hypothesis based on a given set of training data samples. Read the
training data from a .CSYV file.

import csv

with open('tennis.csv', 't") as I

reader = csv.reader()
your list = list(reader)

h — [['0', !0!’ |O!’ '0', !0!’ lO!]]

for i in your list:

print(i)
if i[-1] == "True™:
1=0
for x in 1
if x '="True":

if x 1= h[0][j] and h[O][j] ="0"

h[O][j] = x
elif x !="h[0][j] and h[O][j] !="0":
h[0]j] ="
else:
pass
i=j1
print("Most specific hypothesis is")
print(h)
Result

'Sunny', "Warm', 'Normal', 'Strong', "Warm', 'Same’',True
'Sunny', "Warm', 'High’, 'Strong’, "Warm', 'Same’, True
'Rainy’, 'Cold’, 'High’, 'Strong’, '"Warm', 'Change’',I'alse
'Sunny', "Warm', 'Iligh’, 'Strong’, 'Cool’, 'Change',True

Maximally Specific set

[['Sunny', "Warm', '?’, "Strong’, '?', '?']]

b) For a given set of training data examples stored in a .CSV file, implement and
demonstrate the Candidate-Elimination algorithm to output a description of

the set of all hypotheses consistent with the training examples.

class Holder:
factors={} #lnitialize an empty dictionary

attributes = () #declaration of dictionaries parameters with an arbitrary length

Constructor of class Holder holding two
parameters, self refers to the instance of the class

def init (selfattr): #

self attributes = attr
for 1 in attr:
self.factors[1]=[]

def add values(self.factor,values):
self.factors[factor]=values

class CandidateElimination:

Positive={} #Initialize positive empty dictionary
Negative={ } #Initialize negative empty dictionary

def init (self,data,fact):

self.num_factors = len(data[0][0])
self.factors = fact.factors

self.attr = fact. attributes
self.dataset = data

def run algorithm(self):

Initialize the specific and general boundaries, and loop the dataset against
the algorithm

G = self.initialize G()
S = selflinitializeS()

Programmatically populate list in the iterating variable trial set
count=()
for trial_set in self.dataset:
if self.is positive(trial set): #if trial set/example consists of positive examples

G = self.remove_inconsistent G(G,trial_set[0]) #remove inconsitent data from
the general boundary

S new = S[:] #initialize the dictionary with no key-value pair
print (S new)
for sin S:

if not self.consistent(s,trial_set[0]):
S new.remove(s)
generalization = self.generalize inconsistent S(s,trial set[0])
generalization = self.get general(generalization,G)

if generalization:

S new.append(generalization)
S =8 new[:]

S = self.remove more general(S)
print(S)
else:#if it is negative

S = self:remove _inconsistent S(S.trial set[0]) #remove inconsitent data
from the specific boundary

G new = G[:] #initialize the dictionary with no key-value pair (dataset
can take any value)

print (G_new)
for gin G:

if self. consistent(g,trial set[0]):
G new.remove(g)
specializations = self.specialize inconsistent G(g,trial set[0])
specializationss = self.get specific(specializations.S)
if specializations != []:

G new += specializationss

G =G new|[:]
G = self.remove more specific(G)
print(G)
print (S)
print (G)
def initializeS(self):

" Initialize the specific boundary "

S =tuple(['-' for factor in range(self.num factors)]) #6 constraints in the
vector return [S]

def initializeG(self):
" Initialize the general boundary ™

G = tuple(['? for factor in range(self.num_factors)]) # 6 constraints in the
vector return [G]

def'is positive(self,trial set):

" Check if a given training trial_set is positive ™
if trial set[1] =="Y"

return True

elif trial set[1] =='N"
return False
else:
raise TypeError("invalid target value")

def match factor(self,valuel,value2):

" Check for the factors values match,
necessary while checking the consistency of
training trial set with the hypothesis "

if valuel =='? or value2 =="7"
return True

elif valuel == value2 :
return True

return False
def consistent(self,hypothesis,instance):

" Check whether the instance is part of the hypothesis
" for 1.factor in enumerate(hypothesis):

if not self.match_factor(factor,instance[i]):
return False

return True

defremove inconsistent G(self,hypotheses,instance):

e For apositive trial_set, the hypotheses in G
inconsistent with it should be removed ™
G _new = hypotheses|[:]

for g in hypotheses:

if not self.consistent(g,instance):

G _new.remove(g)
return G_new

def remove inconsistent S(self,hypotheses,instance):

e For anegative trial set, the hypotheses in
S inconsistent with it should be removed

S new = hypotheses]:]
for s in hypotheses:
if self.consistent(s,instance):
S _new.remove(s)

return S new
def remove more general(self,hypotheses):

e After generalizing S for a positive trial set, the hypothesis in
S general than others in S should be removed ™

S new = hypotheses]:]

for old in hypotheses:

fornew in S_new:

it old!=new and self.more general(new,old):
S new.remove[new|
return S new

def remove_more_ specific(self,hypotheses):

e After specializing G for a negative trial set, the hypothesis in
G specific than others in G should be removed "

G _new = hypotheses|:]
for old in hypotheses:
for new in G new:

it old!=mew and self.more specific(new,old):
G new.remove[new|

return G_new

def generalize inconsistent S(selfhypothesis,instance):

® When a inconsistent hypothesis for positive trial set is seen in the
specific boundary S,

it should be generalized to be consistent with the trial set ... we will get
one hypothesis"

hypo = list(thypothesis) # convert tuple to list for mutability
for i,factor in enumerate(hypo):

if factor =="-": hypol[i] =
instancel[i]

elif not self.match factor(factor,instancel[i]):
hypoli] ="

generalization = tuple(hypo) # convert list back to tuple for
immutability return generalization

def specialize inconsistent G(self.hypothesis,instance):

e When a inconsistent hypothesis for negative trial set is seen in the
general boundary G

should be specialized to be consistent with the trial set.. we will get a set
of hypotheses ™
specializations =]

hypo = list(thypothesis) # convert tuple to list for mutability
for 1,factor in enumerate(hypo):
if factor =="7";

values = self factors|self.attr|i] |
for j in values:
if instance[i] !=]:
hyp=hypol:]
hyp[i]=

hyp=tuple(hyp) # convert list back to tuple for immutability
specializations.append(hyp)

return specializations

def get general(self,generalization,G):

® Checks if there is more general hypothesis in G for
a generalization of inconsistent hypothesis in S

in case of positive trial_set and returns valid generalization "
for g in G:

if self. more general(g, generalization):
return generalization
return None

def get specific(self,specializations,S):

e Checks if there is more specific hypothesis in S for
each of hypothesis in specializations of an inconsistent
hypothesis in G in case of negative trial set

and return the valid specializations™
valid_specializations = []
for hypo in specializations:

forsin S:

it self.more specific(s,hypo) or s==self.initializeS()[0]:
valid specializations.append(hypo)
return valid specializations

def exists general(self.hypothesis,G):

""Used to check if there exists a more general hypothesis in
general boundary for version space™

for gin G:

if self.more general(g hypothesis):
return True
return False

def exists specific(self,hypothesis,S):

"Used to check if there exists a more specific hypothesis in
general boundary for version space™

forsin S:
it self. more specific(s,hypothesis):
return True

return False
def more general(self,hypl,hyp2):

" Check whether hypl is more general than hyp2 ™
hyp = zip(hypL.hyp2)

for 1,j in hyp:

if1==""
continue

elif j =="7"

ifil="7"
return False
elifi 1=7;
return False
else:

continue
return True

def more_specific(self,hyp1.,hyp2):
" hypl more specific than hyp2 is

equivalent to hyp2 being more general than hypl ™
return self.more_general(hyp2.hypl)

dataset=[(('sunny','warm', 'normal','strong','warm",'same"),'Y"),(('sunny’,'warm','high’,'stron

g''warm','same'),' Y"),(("rainy','cold','high','strong’.'warm’,'change"),'N"),(('sunny’,'warm",'hi
gh'.'strong’,'cool’,'change"),'Y")]

attributes =("Sky","Temp',"Humidity',"Wind','Water','Forecast')
f = Holder(attributes)
f.add_values('Sky',('sunny','rainy','cloudy")) #sky can be sunny rainy or cloudy

f.add values("Temp',('cold’,'warm")) #Temp can be sunny cold or warm

f.add values("Humidity',('"normal’,'high")) #Humidity can be normal or high
f.add values('Wind',('weak’,'strong")) #wind can be weak or strong

f.add values("Water',("'warm’,'cold")) #water can be warm or cold

fladd values('Forecast',('same','change")) #Forecast can be same or change

a = CandidateElimination(dataset,f) #pass the dataset to the algorithm class and call
the run algoritm method
a.run_algorithm()

Result

[('sunny', 'warm', 'normal’, 'strong’, 'warm',
'same")] [('sunny', 'warm', 'normal’, 'strong',
'warm', 'same")] [('sunny’, 'warm’, '?', 'strong’,
lwamll, lsamel)] [(l?l, l?l, l?l, l?l, l?l, l?l)]

[(lsunnyl, l?l, l?l, l?l, l?l, l?l)’ (l?l, lwamll, l?l, l?l, l?l, l?l)’ (l?l, l?l, l?l, l?l, l?l,
'same’ 'sunny', 'warm', '?, 'strong', 'warm', 'same’
1)]F[(l yl o LI S L] |g)]
[(‘'sunny', 'warm', '?", 'strong’, '?", "M")]
[(‘'sunny', 'warm', '?", 'strong’, '?", "M")]

[('Sunl'ly', |?u, I?I’ I?I’ |?u, |?u)’ (|?|’ 'Warn'l', |?|’ I?I’ u?u, |?u)]

Experiments Details and Lab Instruction for Week 03-04

WEEK-3 and Week 4
Experiment 02

1. Course objectives: This course will enable students to

1. Make use of Data sets for building the decision tree machine learning algorithm.

2. Understand the working principles of the decision tree based |D3 algorithm.

2. Implement the machine learning algerithms in any suitable language of choice.

3. build and implement an Artificial Neural Network Backpropagation algorithm for training
and testing using proper data sets.

2. Description (If any):
1. The programs can be implemented in either JAVA or Python.

2. Data sets can be taken from standard repositories
(https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

3. Problem Statement:

a) Wirite a program to demonstrate the working of the decision tree based ID3
algorithm. Use an appropriate data set for building the decision tree and apply this
knowledge to classify a new sample.

b) Build an Artificial Neural Network by implementing the Backpropagation algorithm
and test the same using appropriate data sets.

4. Experiment Study and Analysis Details:

Use of Data sets for implementing various machine learning algorithms. The process of
training different algorithms on the data sets will be discussed and analysed for deep

understanding of the principles. The machine learning concepts and algorithms can be
implemented in any suitable language of choice.

5. Solution Framework:
NA

Code and Design Standards:

Program:

a) Write a program to demonstrate the working of the decision tree based ID3
algorithm. Use an appropriate data set for building the decision tree and apply
this knowledge to classify a new sample.

import numpy as np
import math
from data loader import read data
class Node:
def init (self, attribute):
self.attribute = attribute
self.children =[]

self.answer =""

def str (self):

return self attribute

def subtables(data, col, delete):
dict = {}

items = np.unique(data[:, col])
count = np.zeros((items.shape[0], 1), dtype=np.int32)
for x in range(items.shape[0]):
for y in range(data.shape[0]):
if data]y, col] == items|[x]:

count[x] +=1

for x in range(items.shape[0]):

dict[items[x]] = np.empty((int(count|x]), data.shape[1]), dtvpe="|S32")

pos =0
for v in range(data.shape[0]):
if dataly, col] == items[x]:
dict[items|x]][pos] = data]y]
pos +=1
if delete:
dict[items[x]] = np.delete(dict[items[x]]. col, 1)
return items, dict

def entropy(S):

items = np.unique(S)
if items.size == 1:

return 0

counts = np.zeros((items.shape[0], 1))
sums = 0

for x in range(items.shape[0]):
counts|[x] = sum(S == items[x]) / (S.size * 1.0)
for count in counts:

sums +=-1 * count * math.log(count, 2)
return sums

def gain ratio(data, col):
items, dict = subtables(data, col, delete=False)

total size = data.shape[0]

entropies = np.zeros((items.shape[0], 1))
intrinsic = np.zeros((items.shape[0], 1))
for x in range(items.shape[0]):

ratio = dict[items[x]].shape][0]/(total size * 1.0)
entropies[x] = ratio * entropy(dict[items[x]][:, -1])
intrinsic[x| = ratio * math.log(ratio, 2)

total entropy = entropy(datal:, -1])
iv =-1* sum(intrinsic)

for x in range(entropies.shape[0]):
total entropy -= entropies[x]

return total entropy / 1v
def create_node(data, metadata):
if (np.unique(data]:, -1])).shape[0] == 1:
node = Node("")
node.answer = np.unique(datal:, -1])[0]

return node

gains = np.zeros((data.shape[1] - 1, 1))
for col in range(data.shape[1] - 1):

gains|col] = gain ratio(data, col)

split = np.argmax(gains)

node = Node(metadata[split])

metadata = np.delete(metadata, split, 0)
items, dict = subtables(data, split, delete=True)
for x in range(items.shape[0]):

child = create node(dict[items[x]], metadata)

node.children.append((items|x], child))
return node

def empty(size):

g=""

for x in range(size):
S +: nn

return s

def print tree(node, level):
if node.answer !="":
print(empty(level), node.answer)
return

print(empty(level), node.attribute)
for value, n in node.children:

print(empty(level + 1), value)
print tree(n, level + 2)

metadata, traindata = read data("tennis.csv")
data = np.array(traindata)

node = create_node(data, metadata)
print_tree(node, 0)
Data loader.py
import csv
defread data(filename):
with open(filename, 't") as csvfile:
datareader = csv.reader(csvfile, delimiter="")
headers = next(datareader)
metadata = []
traindata = ||
for name in headers:
metadata.append(name)
for row in datareader:
traindata.append(row)

return (metadata, traindata)

Tennis.csv

outlook. temperature, humidity,wind,
answer sunny,hot,high,weak,no
sunny,hot,high,strong.no
overcast,hot,high,weak,ves
rain,mild,high,weak,yes
rain,cool,normal,weak,yes
rain,cool,normal,strong,no

overcast,cool,normal,strong,yes

sunny,mild,high,weak,no
sunny,cool,normal, weak,yes
rain,mild,normal, weak,yes
sunny,mild,normal,strong,yes
overcast,mild,high,strong,yes
overcast,hot,normal, weak_ yes
rain,mild,high,strong,no

Result
outlook

overcast

b'yes'
rain
wind

b'strong’

b'no’
b'weak'
b'yes'
sunny
humidity
b'high'

b'no'

b'normal
b'yes

b) Build an Artificial Neural Network by implementing the
Backpropagation algorithm and test the same using appropriate data
sets.

import numpy as np
X = np.array(([2, 9. [1, 5], [3, 6]). dtype=float)
y = np.array(([92], [86]. [89]), dtype=tloat)

X = X/np.amax(X,axis=0) # maximum of X array longitudinally
y=vy/100

#Sigmoid Function
def sigmoid (x):
return 1/(1 + np.exp(-x))

#Derivative of Sigmoid Function
def derivatives sigmoid(x):

return x * (1 - x)
#Variable initialization

epoch=7000 #Setting training iterations
Ir=0.1 #Setting learning rate

inputlaver neurons = 2 #number of features in data set

hiddenlayer neurons = 3 #number of hidden layers neurons
output_neurons = 1 #number of neurons at output layer

#weight and bias initialization

wh=np.random.uniform(size=(inputlayer neurons,hiddenlayer neurons))

bh=np.random.uniform(size=(1,hiddenlayer neurons))
wout=np.random.uniform(size=(hiddenlayer neurons,output neurons))

bout=np.random.uniform(size=(1,output neurons))
#draws a random range of numbers uniformly of dim x*y
for 1 in range(epoch):

#Forward Propogation
hinp 1=np.dot(X,wh)
hinp=hinp1 + bh
hlayer act =sigmoid(hinp)

outinpl=np.dot(hlayer act.wout)
outinp= outinp 1+ bout
output =sigmoid(outinp)

#Backpropagation
EO = y-output
outgrad = derivatives sigmoid(output)
d output = EO* outgrad
EH =d output.dot(wout.T)

hiddengrad = derivatives sigmoid(hlayer act)?how much hidden layer
wts contributed to error

d hiddenlayer = EH * hiddengrad

wout += hlayer act.T.dot(d output) *1r# dotproduct of nextlayererror and
currentlayerop

e bout +=np.sum(d output, axis=0,keepdims=True)
*Ir wh += X.T.dot(d hiddenlayer) *Ir

#bh +=np.sum(d_hiddenlayer, axis=0,keepdims=True) *Ir

print("Input: \n" + str(X))
print(" Actual Output: ‘\n" + str(v))

print("Predicted Output: \n" ,output)

Result
Input:
[[0.66666667 1.]
[0.33333333 0.55555556]
[1. 0.66666667]]

Actual Output:
[[0.92]

[0.86]

[0.89]]
Predicted Output:

[[0.89559591]

[0.88142069]

[0.8928407 1]

Experiments Details and Lab Instruction for Week 05-06
WEEK-5 and Week 6
Experiment 05 and 06

1. Course objectives: This course will enable students to

1. Implementing the naive Bayesian classifier using a sample training data set stored as a
.CSV file.

2. Implement the machine learning concepts and algorithms in any suitable language of
choice

3. Build a naive Bayesian classifier model for use in real-world scenario like classification of
documents.

4, Measure the accuracy of this naive Bayesian classifier model in terms of standard
protocol like precision, recall etc. on a given data set.

2. Description (If any):
1. The programs can be implemented in either JAVA or Python.

2. Data sets can be taken from standard repositories
(https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

3. Problem Statement:

a) Write a program to implement the naive Bayesian classifier for a sample training data
set stored as a .CSV file. Compute the accuracy of the classifier, considering few test
data sets

b) Assuming a set of documents that need to be classified, use the naive Bayesian
Classifier model to perform this task. Built-in Java classes/API| can be used to write
the program. Calculate the accuracy, precision, and recall for your data set

4. Experiment Study and Analysis Details:

The process of building a Naive bayes Classifier will be studied based on a sample training
data stored as a .C3V file and the performance of the algorithm will be tested on some Test
data sets. Applications of this algorithm will be studied on few real-world scenarios.

5. Solution Framework:

NA

Code and Design Standards:

Program:

a) Write a program to implement the naive Bayesian classifier for a sample
training data set stored as a .CSV file. Compute the accuracy of the classifier,
considering few test data sets.

import csv
import random
import math

def loadCsv(filename):
lines = esv.reader(open(filename, "r™));
dataset = list(lines)
for 1 in range(len(dataset)):

#converting strings into numbers for processing
dataset][1] = [float(x) for x in dataset[i]]

return dataset

def splitDataset(dataset, splitRatio):
#67% training size

trainSize = int(len(dataset) * splitRatio);
trainSet = []

copy = list(dataset),

while len(trainSet) < trainSize:

#generate indices for the dataset list randomly to pick ele for training data index
= random.randrange(len(copy));
trainSet.append(copy.pop(index))
return [trainSet, copy]
def separateByClass(dataset):
separated = {}

#ereates a dictionary of classes 1 and 0 where the values are the instacnes belonging
to each class
for 1 in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] =[]
separated[vector[-1]].append(vector)
return separated

def mean(numbers):
return sum(numbers)/float(len(numbers))

def stdev(numbers):
avg = mean(numbers)

variance = sum([pow(x-avg,2) for x in numbers|)/float(len(numbers)-1)
return math.sqrt(variance)

def summarize(dataset):

summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(* dataset)];
del summaries|-1]
return summaries

def summarizeByClass(dataset):
separated = separateByClass(dataset);
summaries = §{}

for classValue, instances in separated.items():

#summaries 1s a dic of tuples(mean,std) for each class value
summaries[classValue] = summarize(instances)

return summaries
def calculateProbability(x, mean, stdev):

exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

def calculateClassProbabilities(summaries, inputVector):
probabilities = {}

for classValue, classSummaries in summaries.items():#class and attribute information
as mean and sd
probabilities[class Value] = 1
for 1 in range(len(classSummaries)):

mean, stdev = classSummaries[i] #take mean and sd of every attribute
for class 0 and 1 seperaely

x = inputVector|i] #testvector's first attribute probabilities[class Value] *=
calculateProbability(x, mean, stdev);#use
normal dist
return probabilities

def predict(summaries, inputVector):

probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1

for classValue, probability in probabilities.items():#assigns that class which has he
highest prob

if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel

def getPredictions(summaries, testSet):
predictions =[]
for 1 in range(len(testSet)):

result = predict(summaries, testSet[i])
predictions.append(result)
return predictions

def getAccuracy(testSet, predictions):
correct = 0
for 1 in range(len(testSet)):
it testSet[i][-1] = predictions|i]:

correct += 1
return (correct/float(len(testSet))) * 100.0
def main():

filename = 'Sdata.csv'
splitRatio = 0.67
dataset = loadCsv(filename);

trainingSet, testSet = splitDataset(dataset, splitRatio)

print('Split {0} rows into train={1} and test={2}
rows' format(len(dataset), len(trainingSet), len(testSet)))
prepare model

summaries = summarizeByClass(trainingSet);
test model

predictions = getPredictions(summaries, testSet)

accuracy = getAccuracy(testSet, predictions)
print(' Accuracy of the classifier is : {0}%'.format(accuracy))

main()

Result

confusion matrix is as
follows [[17 0 0]
[0170]
[0011]]
Accuracy metrics
precision recall f1-score support

0 [1.00 [1.00 J1.00 |17
1 [1.00 J1.00 [1.00 |17
2 [1.00 |1.00]1.00 |11
45

ave /totall 1.00] 1.00] 1.00

b) Assuming a set of documents that need to be classified, use the naive Bayesian
Classifier model to perform this task. Built-in Java classes/API can be used to
write the program. Calculate the accuracy, precision, and recall for your data
set.

import pandas as pd

msg=pd.read csv('naivetextl.csv',names=['message',label'])
print('The dimensions of the dataset',msg.shape)
msg['labelnum']=msg.label.map({'pos':1,'"neg":0})
X=msg.message

y=msg.labelnum

print(X)

print(y)

#splitting the dataset into train and test data

from sklearn.model selection import train test split
xtrain,xtest,ytrain, ytest=train test split(X,y)
print(xtest.shape)

print(xtrain.shape)

print(ytest.shape)

print(ytrain.shape)

#output of count vectoriser is a sparse matrix

from sklearn.feature extraction.text import CountVectorizer
count_vect = CountVectorizer()

xtrain_dtm = count vect.fit transform(xtrain)

xtest dtm=count vect.transform(xtest)

print(count vect.get feature names())

df=pd.DataFrame(xtrain_dtm.toarray(),columns=count vect.get feature names())
print(df)ftabular representation
print(xtrain dtm) #sparse matrix representation

e Training Naive Bayes (NB) classifier on training
data. from sklearn.naive bayes import
MultinomialNB

clf = MultinomialNB().fit(xtrain _dtm,ytrain)
predicted = elf.predict(xtest dtm)

#printing accuracy metrics

from sklearn import metrics

print(' Accuracy metrics')

print(' Accuracy of the classifer is',metrics.accuracy score(ytest,predicted))
print('Confusion matrix")

print(metrics.confusion _matrix(ytest,predicted))
print('Recall and Precison ')

print(metrics.recall score(ytest,predicted))
print(metrics.precision score(vtest,predicted))

"docs new = ['I like this place’, "My boss is not my saviour'|

X _new_ counts = count_vect.transform(docs new)

predictednew = clf.predict(X_ new counts)

for doc, category in zip(docs _new, predictednew):
print('%os->%s' % (doc, msg.labelnum|category])"

I love this sandwich,pos

This 1s an amazing place,pos

I feel very good about these beers,pos

This is my best work,pos

What an awesome view,pos

I do not like this restaurant,neg

I am tired of this stuff,neg

I can't deal with this,neg
He is my sworn enemy,neg

My boss is horrible,neg
This is an awesome place,pos

I do not like the taste of this juice.neg
I love to dance,pos

I am sick and tired of this place,neg
What a great holiday,pos

That is a bad locality to stay.neg

We will have good fun tomorrow,pos
I went to my enemy's house today.neg

Result

['about', 'am', 'amazing', 'an', 'and', 'awesome', 'beers', 'best', 'boss', 'can’, 'deal’,
'do', 'enemy', 'feel', fun', 'good’, 'have', 'horrible!, 'house', 'is!, 'like’, love!, 'my’,
'not', 'of', 'place', 'restaurant', 'sandwich', 'sick’, 'stuff’, 'these', 'this', 'tired', 'to,
'today’, ‘tomorrow', 'very', 'view', 'we', 'went', 'what', 'will', 'with', 'work’|

about am amazing an and awesome beers best boss can ... today
\
0 10 00001 00]0...0
1 00 00000 10]0...0
2 00 1100 0000...0
3 00 00000 00]0...1
gl 00 00000 00]0...0
3 01 001 00000...0
6 00 00000 00]1...0
7 00 00000 00]0...0
3 01 00000 00]0...0

0 00 01010 00]0...0
1000 00000000]... 0
1100 000 00010...0
1200 01010000]... 0
tomorrow what will with
very| view we went| work
0| O 1 0 [0]00] O 00
1 0] 0 0 0[00[0 0] 1
2] 0] 0 0 0[00[0 0
3] 0] 0 0 0[10[0 0
4 0] 0 0 0[100[0 0] 0
510 0 0 010 0[0 0] 0
6] 0] 0 0 0[00[0 11 0
71 1 0 0 110 0] 1 0] 0
g O 0 0 0[00[0 0] 0

Experiments Details and Lab Instruction for Week 07-08
WEEK-7 and Week 8
Experiment 07 and 08

1. Course objectives: This course will enable students to

1. Implement Bayesian Network for medical data sets.

2. Learn the diagnosis of heart patients using standard Heart Disease Data Set.

3. Implement the machine learning concepts and algorithms in any suitable language of
choice

4. Apply EM algorithm for clustering purpose and learn the differences with K-Means
algorithm using the same dataset stored in a .CSV file.

2. Description (If any):
1. The programs can be implemented in either JAVA or Python.

2. Data sets can be taken from standard repositories
(https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

3. Problem Statement:

a) Write a program to construct a Bayesian network considering medical data. Use this
model to demonstrate the diagnosis of heart patients using standard Heart Disease
Data Set. You can use Java/Python ML library classes/API.

b) Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data
set for clustering using k-Means algorithm. Compare the results of these two
algorithms and comment on the quality of clustering. You can add Java/Python ML
library classes/API in the program

4. Experiment Study and Analysis Details:

Applications of Bayesian network on medical data will be experimented and analysed. The
effectiveness of this algorithm will be analysed using standard Heart Disease Data Sets. EM
algorithm will be used for clustering a data set and compared with standard K-Means
clustering algorithm.

5. Solution Framework:
NA

Code and Design Standards:

Program:

a) Write a program to construct a Bayesian network considering medical data.
Use this model to demonstrate the diagnosis of heart patients using standard
Heart Disease Data Set. You can use Java/Python ML library classes/APL

From pomegranate import*
Asia=DiscreteDistribution({ ., True*:0.5, ,,False™:0.5 })
Tuberculosis=ConditionalProbabilityTable(

[[,,True™, ,, True™, 0.2],

[,,True™, , False™, 0.8],

[,,False™, ,,True"™, 0.01],
[,,False™, ,False", 0.98]], [asia])

Smoking = DisereteDistribution({ ., True™:0.5, ,,False™0.5 })
Lung = ConditionalProbability Table(

[[,.True®, ,,True*, 0.75],

[,,True®, , False™.0.25].

| sBalse™ o lmue®; 0.02];
[..False™, ,,False™, 0.98]], [smoking])

Bronchitis = Conditional Probability Table(
[[”True”a ”True”; 092],

[,,True™, , False™,0.08].
[..False™, ,, True™,0.03],
[..False™, ,False™, 0.98]], [smoking])

Tuberculosis or cancer = ConditionalProbability Table(
[[,.True™, ., True™, ., True", 1.0],

[,,True®, ., True™, ,False"™, 0.0],

[,,True®, , False®™, ,,True®™, 1.0],

[.,True™, , False™, ,False™, 0.0],
[,.False™, ,,True™, ,,True™, 1.0],

[.,False™, ,,True™, ,False", 0.0],
[.,False®, False™ , True"™, 1.0],
[.,False™, False™, False", 0.0]], [tuberculosis, lung])

Xray = ConditionalProbability Table(
[[5sTrue®,..;True®, 0:883],
[,,True®, , False™, 0.115],

[..False™, ,,True™, 0.04],

[..False™, , False™, 0.96]], [tuberculosis or cancer])
dyspnea = ConditionalProbabilityTable(

I] sslrae™, o Tome®, o True”,0.96];

[,,True®, ., True™, ,,False®™, 0.04],

[,,True®, , False™, ,,True™, 0.89],

[,,True™, , False™, , False™, 0.11],

[..False™, ,,True™, ,,True™, 0.96].

[.,False™, ,,True®™, , False", 0.04],

[,,False™, ,False" ,, True", 0.89].

[..False™, ,False™, ,False™, 0.11]], [tuberculosis or cancer, bronchitis])
s0 = State(asia, name="asia”

s1 = State(tuberculosis, name="" tuberculosis™)

§2 = State(smoking, name="smoker”)

network = BayesianNetwork(“asia™
network.add nodes(s0,s1,52)

network.add edge(s0,51)
network.add edge(s1.s2)
network.bake()

print(network.predict probal({,,tuberculosis™: ., True™}))

b) Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same
data set for clustering using %.-Means algorithm. Compare the results of these
two algorithms and comment on the quality of clustering. You can add
Java/Python ML library classes/API in the program.

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets.samples generator import
make blobs X, y true = make blobs(n_samples=100,
centers = 4,Cluster_std=0.60,random_state=0) X = X[z, ::-1]

#flip axes for better plotting

from sklearn.mixture import GaussianMixture gmm
= GaussianMixture (n components = 4).£it(X)
lables = gmm.predict(X)

plt.scatter(X[:, 0], X[:, 1], c=labels, =40, emap=""viridis'"),
probs = gmm.predict proba(X) print(probs[:5].round(3))

size = 50 * probs.max(1) ** 2 # square emphasizes differences
plt.scatter(X[:, 0], X[:, 1], c=labels, emap=""viridis"™, s=size);
from matplotlib.patches import Ellipse

def draw_ellipse(position, covariance, ax=None, **kwargs); “"”"Draw an
cllipse with a given position and covariance™””
Ax = ax or plt.gea()

e Convert covariance to principal
axes 1f covariance.shape ==(2,2):

U, s, Vt = np.linalg.svd(covariance)
Angle = np.degrees(np.arctan2(U[1, 0], U[0,0]))
Width, height = 2 * np.sqrt(s)
else:
angle =0
width, height = 2 * np.sqrt(covariance)

#Draw the Ellipse
for nsig in range(1,4):

ax.add patch(Ellipse(position, nsig * width, nsig *height,

angle, **kwargs))

def plot gmm(gmm, X, label=True, ax=Nong¢):
ax = ax or plt.gca()

labels = gmm.fit(X).predict(X)
if label:

ax.scatter(X[:, 0], x[:, 1], c=labels, s=40, cmap="viridis*, zorder=2)

else:

ax.scatter(X[:, 0], x[:, 1], s=40, zorder=2)
ax.axis(,,equal™)

w factor = 0.2 / gmm.weights .max()

for pos, covar, w in zip(gmm.means , gmm.covariances , gmm.weights):
draw_ellipse(pos, covar, alpha=w * w_factor)

gmm = GaussianMixture(n components=4, random state=42)
plot gmm(gmm, X)

gmm = GaussianMixture(n components=4, covariance type="tull™,
random_state=42)
plot gmm(gmm, X)

Result

[1.0,0,0]]

K-means
from sklearn.cluster import KMeans

#trom sklearn import metrics
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

data=pd.read csv("kmeansdata.csv")
df1=pd.DataFrame(data)
print(df1)

f1 = df1['Distance Feature'].values
2 = df1['Speeding_Feature'].values

X=np.matrix(list(zip(f1,2)))

plt.plot()
plt.xlim([0, 100])

plt.vlim([0, 50])
plt.title('Dataset")
plt.vlabel("speeding feature')
plt.xlabel('Distance Feature")

plt.scatter(f1,£2)
plt.show()

e create new plot and
data plt.plot()
colors = ['b), 'g', 'r']

markers = ['0', 'V,

FSF]

e KMeans algorithm

#K=3

kmeans model = KMeans(n clusters=3).fit(X)

plt.plot()
for 1,1 in enumerate(kmeans model.labels):

plt.plot(f1[i], £2[i], color=colors[1], marker=markers[1],1s="Nong")

plt.xlim([0, 100])
plt.ylim([0, 50])

plt.show()

Driver_ID,Distance Feature,Speeding Feature
3423311935,71.24,28

3423313212,52.53,25
3423313724,64.54,27
3423311373,55.69,22
3423310999,54.58,25

3423313857,41.91,10
3423312432,58.64,20

3423311434.,52.02,8

3423311328,31.25,34
3423312488,44.31,19
3423311254,49.35.40
3423312943,58.07.45
3423312536,44.22,22

3423311542,55.73,19
3423312176,46.63.43
3423314176,52.97,32
3423314202,46.25,35
3423311346,51.55,27
3423310666,57.05,26
3423313527,58.45,30
3423312182,43.42.23
3423313590,55.68.37
3423312268,55.15,18

]
L]
& .
]
[L] .
5 _ »
B X °
& o5 9 ®
o -
& % .
o L]
] . »
w
*
°
- -+ —r v
20 A &0 BO 100
Distance_Feature
50 7
L 4
v
40 4 v
v
v Y
=% v
N1 43 i
a B
[
b)
20 1
0 ® ‘.
I -
L]
& 0 a0 10

Experiments Details and Lab Instruction for Week 09-10
WEEK-9 and Week 10
Experiment 09 and 10

1. Course objectives: This course will enable students to

1. Implement K-Nearest Neighbour (KNN) for classification of iris data set.

2. Implement the machine learning concepts and algorithms in any suitable language of
choice

3. Learn the working principles of non-parametric Locally Weighted Regression algorithm for
fitting data points.

4. Draw graphs and learn to select the appropriate data set for their experiment.

2. Description (If any):
1. The programs can be implemented in either JAVA or Python.

2. Data sets can be taken from standard repositories
(https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

3. Problem Statement:

a) Write a program to implement k-Nearest Neighbour algorithm to classify the iris data
set. Print both correct and wrong predictions. Java/Python ML library classes can be
used for this problem.

b) Implement the non-parametric Locally Weighted Regression algorithm in order to fit
data points. Select appropriate data set for your experiment and draw graphs.

4. Experiment Study and Analysis Details:

K-Nearest Neighbour (KNN) algorithm will be implemented on the IRIS data set. The
accuracy of this algorithm analysed based on the correct and wrong predictions. Students
will be allowed to use standard library classes for this algerithm. To fit data points
hon-parametric Locally weighted Regression algorithm will be implemented. Appropriate
data set for this algorithm will be studied and graphs will be drawn to analyse the result.

5. Solution Framework:
NA

Code and Design Standards:

Program:

a) Write a program to implement k-Nearest Neighbour algorithm to classify the
iris data set. Print both correct and wrong predictions. Java/Python ML
library classes can be used for this problem.

import csv
import random
import math
import operator

def loadDataset(filename, split, trainingSet=[] , testSet=[]):
with open(filename, 'rb") as csvfile:
lines = esv.reader(csvfile)
dataset = list(lines)

for x in range(len(dataset)-1):
for y in range(4):

dataset[x][v] = float(dataset|x][v])
if random.random() < split:
trainingSet. append(dataset[x])

else:
testSet.append(dataset[x])

def euclideanDistance(instancel, instance2, length):

distance = 0
for x in range(length):

distance += pow((instance1[x] - instance2[x]), 2)
return math.sqrt(distance)

def getNeighbors(trainingSet, testInstance, k):
distances = [|
length = len(testInstance)-1
for x in range(len(trainingSet)):

dist = euclideanDistance(testInstance, trainingSet[x], length)
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1))
neighbors =[]

for x in range(k):

neighbors.append(distances|x][0])
return neighbors

def getResponse(neighbors):
classVotes = {}
for x in range(len(neighbors)):
response = neighbors|[x][-1]
if response in class Votes:
classVotes|[response] += 1
else:
classVotes[response] = 1

sortedVotes =
sorted(class Votes. iteritems(),
reverse=1rue)

return sortedVotes[0][0]

def getAccuracy(testSet,
predictions): correct =0
for x in
range(len(testSet)):
key=operator.itemgetter(1
):
if testSet[x]|[-1] == predictions|x]:
correct += 1

return (correct/float(len(testSet))) * 100.0

def main():

® prepare
data
training
Set= []
testSet=[
| split =
0.67

loadDataset('knndat.data', split, trainingSet,
testSet) print("Train set: ' + repr(len(trainingSet)))
print("Test set: ' + repr(len(testSet)))

® generate

predictions

predictions=||

k=3

for x in range(len(testSet)):
neighbors = getNeighbors(trainingSet, testSet[x],

k. result = getResponse(neighbors)
predictions.append(result)
print(> predicted="—+ repr(result) + ', actual=" + repr(testSet[x][-
1])) accuracy = getAccuracy(testSet, predictions)
print(' Accuracy: ' + repr(accuracy) +

'%0") main()

Result

Confusion matrix is as follows
[[11 0 0]

[091]

[0 1 8]]
Accuracy metrics
01.001.001.00 11
10.90 0.90 0.90 10

20.890.890,89

Avg/Total 0.93 0.93 0.93 30

b) Implement the non-parametric Locally Weighted Regression algorithm in order to fit
data points. Select appropriate data set for your experiment and draw graphs.

from numpy import *
import operator

from os import listdir
import matplotlib

import matplotlib.pyplot as plt
import pandas as pd

import numpy as np1

import numpy.linalg as np
from scipy.stats.stats import pearsonr

def kernel(point,xmat, k):
m,n = npl.shape(xmat)

weights = npl.mat(npl.eye((m)))
for j in range(m):
diff = point - X][j]

weights[],j] = npl.exp(dift* diff. T/(-2.0%k**2))
return weights

def localWeight(point,xmat,ymat,k):
wei = kernel(point,xmat,k)
W=(X.T*(we1*X)).I*(X. T*(weir*ymat.T))
return W

def localWeightRegression(xmat,ymat.k):
m,n = npl.shape(xmat)

ypred = npl.zeros(m)
for 1 in range(m):

ypred[i] = xmat[i]*local Weight(xmat[i],xmat,ymat.k)
return ypred

load data points

data = pd.read csv('datal0.csv')
bill = npl.array(data.total bill)

hp

=

tip =npl .array(data.tip)

#preparing and add 1 in bill
mbill =npl.mat(ball)

mtip = npl.mat(tip)
m=npl.shape(mbill)[1]

one =npl.mat(npl.ones(m))
X=npl.hstack((one.T,mbill. T))

#set k here
ypred =local WeightRegression(X,mtip,2)

SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]

Result

10 0 0
Fozsl ol

