THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/01
EXPERIMENT NAME: Realization of commands, syntax of PROLOG

FROGEAM:

Prolog (programming in /ogic) is one of the classical programming languages developed
specifically for applications in Al It is a declarative programming language. Prolog is
particularly useful for certain problem-solving tasks in Al in domains such as search,
planning, and knowledge representation

Programming in Prolog means describing the world. The simplest way of describing the
world is by stating facts,

bigger (elephant, horse).
This state the fact that an elephant iz bigger than a horse
bigger(elephant, horse).
bigger(horse, donkey).
bigger(donkey, dog).
bigger(donkey, monkey).
After compilation we can ask the Prolog system questions (or gueries in proper Prolog
jargon) about it
?- bigger(donkey, dog).
Yes

Thiz query succeeds, because the fact bigger{donkey, dog) has previously been
communicated to the Prolog system.

?- bigger(monkey, elephant).

No

Query fails as expected

?- bigger{elephant, monkey).

No

Animal X is bigger than animal Y either if this has been stated as a fact or if there is an
animal Z for which it has been stated as a fact that animal X is bigger than

animal Z and it can be shown that animal Z iz bigger than animal ¥. In Prolog such
statements are called rudes.

is_bigger(X, Y) :- bigger(X,Y).
is_bigger(X, Y) :- bigger(X, 7}, is_bigger(Z, Y).

In these rules :- means something like “if” and the comma between the two terms
bigger(X, Z) and is_bigger(Z, Y) stands for “and”. X, Y, and Z are variables, which

in Prolog is indicated by using capital letters.

?- is_bigger(elephant, monkey).

Yes

When doing so the two variables get instantiated: X = elephant and Y = monkey. The rule
says that in order to prove the goal 1s_bigger(X, Y) Prolog has to prove the two subgoals
bigger(X, Z) and i1s_bigger(7, Y), again with the same variable instantiations. This
process is repeated recursively until the facts that make up the chain between elephant
and monkey are found and the query finally succeeds.

?- is_bigger(X, donkey).

Which animals are bigger than a donkey

The Prolog interpreter replies as follows:

?-is_bigger(X, donkey).

X = horse

In case we want to find out if there are more animals that are bigger than the donkey, we
can press the semicolon key, which will cause Prolog to search for alternative solutions to
our query. If we do this once, we get the next solution X = elephant: elephants are also
bigger than donkeys. Pressing semicolon again will return a No, because there are no
more solutions

?- is_bigger(X, donkey).

X = horse ;
X =elephant;
No

The central data structure in Prolog is that of a term. There are terms of four kinds:
atoms, numbers, variables, and compound terms. Atoms and numbers are sometimes
grouped together and called atomic terms.

Atoms are usually strings made up of lower- and uppercase letters, digits, and the
underscore, starting with a lowercase letter. These are constants. The following are all
valid Prolog atoms:

elephant, b, ab¢cXYZ, x_123, how_are_you_today

On top of that also any sequence of arbitrary characters enclosed in single quotes denotes
an atom.

"This is also a Prolog atom.”’

Finally, strings made up solely of special characters like + - * =< > : & are also atoms.
+, 1, K- Ak

All Prolog implementations have an integer type: a sequence of digits, optionally
preceded by a - (minus)

Variables are strings of letters, digits, and the underscore, starting with a capital leiter or
an underscore

X, Elephant, _4711,X_1_2, MyVariable, _

The last one 1s called the anonymous variable and is used when the value of a variable is

of no particular interest. Multiple occurrences of the anonymous variable in one

expression are assumed to be distinet, 1.¢., their values don’t necessarily have to be the
same.

Compound terms are made up of a functor (a Prolog atom) and a number of arguments
(Prolog terms, i.e., atoms, numbers, variables, or other compound terms) enclosed in
parentheses and separated by commas. The following are some

examples for compound terms:

is_bigger(horse, X), f(g(X, _), 7), 'My Functor’(dog)

It’s important not to put any blank characters between the functor and the opening
parentheses, or Prolog won’t understand what you’re trying to say. In other places,
however, spaces can be very helpful for making programs more readable.

A term that doesn’t contain any variables is called a ground term.

All text between /* and */ is taken to be a comment and ignored.

Facts and rules are called clauses. They are used to define predicates. For example, in our
imtroductory example we defined the predicate bigger by means of five facts and the
predicate is bigger by means of two rules.

A fact is a predicate followed by a full stop. The intuitive meaning of a fact is that we
define a certain instance of a relation as being true.

bigger(whale, _).
life_is_beautiful.

A rule consists of a sead (a predicate) and a body (a sequence of predicates separated by
commas). Head and body are separated by the symbol :- and, like every Prolog
expression, a rule has to be terminated by a full stop. The intuitive meaning of a rule is
that the goal expressed by its head is true, if we (or rather the Prolog system) can show
that all of the expressions (subgoals) in the rule’s body are true.

is_smaller(X,Y) :- is_bigger(Y, X).
aunt(Aunt, Child) :- sister(Aunt, Parent),parent(Parent, Child).

A Prolog program is a sequence of clauses.

After compilation, a Prolog program is run by submitting queries to the mterpreter. A
query has the same structure as the body of a rule, i.¢., it is a sequence of predicates
separated by commas and terminated by a full stop. They can be entered at the Prolog
prompt.

Prolog provides a range of useful built-in predicates. Built-in predicate is not allowed to
appear as the principal functor in a fact or the head of a rule.

Most important built-in predicate is = (equality). Instead of writing expressions such as
=(X, Y), we usually write more conveniently X =Y. Such a goal succeeds, if the terms X
and Y can be matched.

Sometimes it can be useful to have predicates that are known to either fail or succeed in
any case. The predicates fail and true serve exactly this purpose. Some Prolog systems
also provide the predicate false, with exactly the same functionality as fail.

Program files can be compiled using the predicate consult. The argument has to be a
Prolog atom denoting the program file you want to compile. If the compilation is
successful, Prolog will reply with Yes. Otherwise a list of errors will be displayed.

?- consult(’big-animals.pl’).

If besides Prolog’s replies to queries you wish your program to have further output vou
can use the write predicate. The argument can be any valid Prolog term. In the case of a
variable its value will get printed to the screen. Execution of the predicate

nl causes the system to skip a line.

?- write("Hello World!’), nl.
Hello World!
Yes

?- X = elephant, write(X), nl.
elephant

X =elephant

Yes

The built-in predicate read/1 is provided to mput terms. It takes a single argument,
which must be a variable. Evaluating it causes the next term to be read from the current
input stream, which by default is the user's keyboard.

In the input stream, the term must be followed by a dot (") and at least one white space
character, such as space or newline. The dot and white space characters are read in but
are not considered part of the term.

There are a number of built-in predicates available that can be used to check the type of a
given Prolog term.

?- atom(elephant).

Yes

?- atom(Elephant).

No

?- X = f(mouse), compound(X).

X = f(mouse)

Yes

Most Prolog systems also provide a help function in the shape of a predicate, usually
called help. Applied to aterm (like the name of a built-in predicate) the system will
display a short description, if available.

?- help(atom).

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/02
EXPERIMENT NAME: Write a program in PROLOG to find factorial of a number

PROGRAM:

fact(0,1).
fact(N,F):-
N>0,
N1 is N-1,
fact(NL,F1),
Fis N * F1.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/03
EXPERIMENT NAME: Write a program in PROLOG to find the n-th Fibonacei term.

PROGRAM:

fib(0,0).
fib(1,1).
fib(N,NF):-
N>1,
Ais N-1,
Bis N-2,
fib(A, AT),
fib(B.BF),
NF is AF+BF.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/04
EXPERIMENT NAME: Write a program in PROLOG to find GCD of two numbers.

PROGRAM:

ged(U, V, U)-
V=0.

ged(U, V, X):-
not(V=0),
Y is Umod V,
ged(V, Y, X).

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/05

EXPERIMENT NAME: Write a program in PROLOG to find the maximum number in a list.
PROGRAM:

maxList([X].X).

maxList([X,Y|Rest],Max) :-

maxList([Y | Rest].MaxRest),
max(X,MaxRest,Max).

max(X,Y,X) - X >=Y.
max(LY,Y) - X <Y.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/06

EXPERIMENT NAME: Write a program in PROLOG to find the relationship among members of
a family.

PROGRAM:
male(jack).

male(oliver).
male(ali).
male(james).
male(simon).
male(harry).
female(helen).
female(sophie).
female(jess).
female(lily).

parent of(jack,jess).
parent_of{jack,lily).
parent of(helen, jess).
parent of(helen, lily).
parent of{oliver,james).
parent of(sophie, james).
parent of(jess, simon).
parent of{ali, simon).
parent_of{lily, harry).
parent of(james, harry).

father of(X.Y):- male(X),
parent of(X,Y).

mother of(X.Y):- female(X),
parent of(X.Y).

grandfather of(X.Y):- male(X),
parent of(X,7),
parent of(Z,Y).

grandmother of(X.Y):- female(X),
parent of(X,7),
parent of(Z.Y).

sister of(X,Y):- 2(X.Y or Y, X)%
female(X), father of(F, Y), father of(F.X),X'\=Y.

sister of(X,Y):- female(X), mother of(M, Y), mother of(M,X), X '=Y.

aunt of(X.Y):- female(X), parent of(Z,Y), sister of(Z,X),!.

brother of(X,Y):- %(X,Y or Y,X)%male(X), father of(F, Y), father of(F,X), X \=Y.

brother of(X,Y):- male(X),mother ofiM, Y), mother of(M,X), X '\=Y.

uncle of(X.Y):- parent of(Z,Y), brother of(Z,X).

ancestor of(X,Y):- parent of(3X,Y).

ancestor of(X.Y):- parent of(X,Z), ancestor of(Z,Y).

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/07
EXPERIMENT NAME: Write a program in PROLOG to add all numbers in a list.

PROGRAM:
list_ sum([], 0).

list sum([H|T], TotalSum) :-
list sum(T, Suml),
TotalSum is H + Suml.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/08
EXPERIMENT NAME: Write a program in PROLOG to evaluate m".

PROGRAM:

pow(M, N, X) :-
X 1s M**N.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/09
EXPERIMENT NAME: Write a program in PROLOG to implement insertion sort.

PROGRAM:

msertionSort([], []) :- L

msertionSort([X|L], S) :- insertionSort(L, S1), nsert(X, S1, S).

msert(X, [, [X]) :- !
insert(X, [X1|L1], [X, X1]L1]) :- X=<X1, .

insert(X, [X1/L1], [X1[L]) :- insert(X, L1, L).

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS ENGINEERING
ARTIFICIAL INTELLIGENCE LAB

EXPERIMENT NO. : PC-REP 402/10
EXPERIMENT NAME: Write a program in PROLOG to solve the water jug problem.

PROGRAM:

waterjug(X,Y):-
X=0,
Y=0,
write("41 jug empty & 31 jug empty™),nl,
Z=0,
A=3,
waterjug(Z,A).

waterjug(X,Y):-
X=0,
Y=3,
write("41 jug empty & 3ljug 31 water").nl,
Z=3,
A=0,
waterjug(Z,A).

waterjug(X,Y):-
X=3,
E g
write(" 41 jug 31 water & 31 jug empty"),nl,
7=,
A=3,
waterjug(Z,A).

waterjug(X,Y):-
Z=3,
A=3,
write("41 jug 31 water& 31 jug 31 water™),nl,
Z=4,
A=2,
waterjug(Z,A).

waterjug(X,Y):-
X=4,
=
write("41 jugh 41 water & 31 jug 21 water").nl,
Z=0,
A=2,
waterjug(Z.A).

waterjug(X, A):-
X=0,
=,
write("4] jug empty & 31 jug 21 water™),nl,
=2
A=0,
waterjug(Z,A).

waterjug(X,Y):-
X=2,
Y=0,
write("Goal Achieved").

