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EXPERIMENT NO. : 01

NAME OF THE EXPERIMENT: Verification of Varignon's theorem.

OBJECTIVE:

To verify the law of polygon of forces for a numbers of coplanar forces in equilibrium.
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Figure 1.1: Labeled diagram of the apparatus



Theory:

The Law of Polygon of Forces states that — if any number of coplanar concurrent forces can be
represented in magnitude and direction by the sides of a polygon taken in order; then their resultant
will be represented by the closing side of the polygon taken in opposite order”,

Also, if the forces form a closed polygon, then the system is in equilibrium. Fig. 1.2 and 1.3
shows a system of five forces Fi, F2, F3, Fz and Fs. The forces are forming a closed polygon in the
first figure, hence they are in equilibrium. In the second figure, the system is not in equilibrium, and
the closing side, shown by dotted line, denotes the Resultant R of the force system.

Figure 1.2 Figure 1.3

PROCEDURE:

1. Set up the apparatus provided after measuring and recording the weights of the pans.

2. Put different weights on the pan (W1, W2, W3, W4 and Ws) and let the system come to
rest and then note their values.

3. Now, fix a sheet of paper on the drawing board and mark the central point (point where
the strings meet and the directions of the string with pencil.

. Remove the paper from the drawing board and draw the lines of actions of the forces.

5. 'Draw the force polygon by representing Wi, W», W3, W4 and Ws in magnitude and
direction.

6. The polygon may not be closed. The error {unclosed distance of the polygon) is due to
error in experimentation and the friction in various moving parts.

7. Repeat the procedure 4 times and complete the experiment.



DATA PROVIDED:

The weight of the Pan

TABULATION OF RESULTS:
Observation Weights in different pans (gm) Resultant (Error) (gm)
Number Analytical | Graphical
W w w 4 Method | Method
1 2 3 4

1

2

3

4

CALCULATIONS:

For each observation, first do the Analytical Calculation, and then find the result using Graphical
Method. For graphical method, draw one Space Diagram and one Vector Diagram. Do mention the
Scale for the Vector Diagram. Do attach the Sheet of Paper, on which the experiment is performed,

with this journal.




THE NEOTIA UNVERSITY
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EXPERIMENT NO. : 02

NAME OF THE EXPERIMENT: Experiments on friction: Determination of coefficient of friction.

OBJECTIVE:

Experimental Computation of Co-Efficient of Friction between an Inclined Plane (Glass) and Trolley

{Iron).
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Figure 3.1: Labeled diagram of the apparatus
THEORY:
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if, @ = Angle of inclination of the plane with the horizontal at which the trolley moves with a

minimum uniform speed up the plane.
W = Load on the slider

P = Force which pulls the trolley up with uniform

movement
R = Normal Reaction

F = Frictional forces acting against
the movement

From the Free Body Diagram, for equilibrium

Resolving along the plane P=pR+Wsing............ 1
Perpendicular tothe plane R=Wcosa=0............. 2
From 1 and 2, p=PW cos a —tana

DESCRIPTION OF APPARATUS:

(1) Inclined plane, (2) Trolley, and (3) Spirit level and Weights.
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Figure 3.2: Experimental setup in the lab



PROCEDURE:

(1) Level the plane with a sprit level and set the pointer at zero.

(2) Put suitable load on the pan and adjust the angle of plane so that the trolley

moves with uniform speed up the plane.

(3) Note the value of W, P and a.

(4) Repeat the experiment for different value of W, P and a.

(5) Calculate value of p for each reading.

(6) Find the average of .

OBSERVATION TABLE:

Observation W P a
number (gm) (gm) (degree)

Average

1.(a)

1.(b)

2.(a)

2.(b)

3.(a)

3.(b)

Note: (a) Reading of W without weight on the slider.

(b) Reading of W with weights on the slider.




THE NEOTIA UNVERSITY
MECHANICAL ENGINEERING DEPARTMENT

EXPERIMENT NO. : 03

NAME OF THE EXPERIMENT: Determining spring stiffness under tension and compressive loads; Strain gauge-
based strain/ deflection / force measurement of a cantilever beam.

Theory:

To measure the stiffness of a compression spring and compare it with theoretical values.
Apparatus:

» Compression of Spring Apparatus

* Hangers

* Weights

A spring is an object that can be deformed by a force and then return to its original shape after the force
is removed. Its sole purpose is to store and utilize the energy. There are broadly two types of deformation:
Elastic deformation: When the stress is removed the material returns to the dimension it had before the
load was applied. The deformation is reversible, non-permanent. Plastic deformation: This occurs when a
large stress is applied to a material. The stress is so large that when removed, the material does not spring
back to its previous dimension. There is a permanent, irreversible deformation. The minimum value of the
stress which produces plastic deformation is known as the elastic limit for the material. Any spring should
be designed so that it only experience upto elastic deformation mostly for efficient working,.

Hooke’s law: Hooke's law states that the force (F) needed to extend or compress a spring by some distance
X is proportional to that distance. That is, F = kx Where F is the force, x is the length of
extension/compression and k is a constant of proportionality known as the spring constant which is
usually given in N/m. Hooke’s law visual representation Material of spring: Steel alloys are the most
commonly used spring materials. The most popular alloys include high carbon (such as the music wire
used for guitar strings), oil-tempered low-carbon, chrome silicon, chrome vanadium, and stainless steel.
Other metals that are sometimes used to make springs are beryllium copper alloy, phosphor bronze, and
titanium. Rubber or urethane may be used for cylindrical, non-coil springs. Ceramic material has been
developed for coiled springs in very high-temperature environments. One-directional glass fiber
composite materials are being tested for possible use in springs. Types of springs according to loading
conditions: Springs can be classified depending on how the load force is applied to them:
Tension/extension spring The spring is designed to operate with a tension load, so the spring stretches as
the load is applied to it.



Derivation of stiffness formula:

A spring may be defined as an elastic member whose primary function is to deflect or distort under the
action of applied load; it recovers its original shape when load is released. Springs are energy absorbing
units whose function is to store energy and to restore it slowly or rapidly depending on the particular
application. In order to derive a necessary formula which governs the behavior of springs, consider a
closed coiled spring subjected to an axial load W.

Let, W = axial load D = mean coil diameter d = diameter of spring wire N = number of active coils G =
modulus of rigidity A = deflection of spring @ = Angle of twist | = length of spring wire = nDN---(i)

For a helical spring, the partial derivative of the strain energy w.r.t. the applied load gives the deflection
in the springi.e. 0U / OW = deflection.

Consider a helical compression spring made up of a circular wire and subjected to axial load W as shown
in the figure above.

Strain Energy is givenby: U=%T* @ - (ii)

Whereas,

T=)2W*D - (iii)

O=T1/1)G - (iv)

(From Torsion formula) putting the values from eqs. # (i), (iii) & (iv) in eq. # {ii) and simplifying,
weget; T=4W2D*N/d*G - (v)

Now applying the Castiglione’ theorem by taking the partial derivative of the strain energy with respect
to the applied load U / dW =A=8 WD’ N / d* G ----- (vi)

W/A=d"G /8 D? N Stiffness=K=d"G/8D*N

Experimental Procedure:
(i). Measure the diameter of wire and outer diameter of spring with the help of Vernier caliper.

(ii). Fit the compression spring in the spring support. To fit compression spring, remove the load hanger
base by unscrewing the grip knob and base from the rod thread.

(iii}. Loosen or remove the grip knob on the marker and pull the load hanger down until the top can be

swung out from the slop

(iv). Withdraw the rod upward, insert the new spring and reverse the above procedure to return the

apparatus to full working condition.



(v). Load the spring by 5N increments recording the change in length of the spring up to the greatest
readable deflection or the max load of25N.

(vi). Record the spring dimensions vii. Repeat the same process for other springs and record the readings.

Observations and Calculations:

Wire diameter (d) = {mm)
Spring O/D = {mm)
Spring Length (I) = {mm)

Number of active turns (N} =

Modulus of rigidity (G)=__ (N/ mm?)
Stiffness=W/A=d*G/ 8N D?

Where d = Wire diameter

N = Number of turns

D = mean diameter of spring coil (O/D —d)

G = Modulus of rigidity (77 KN/ mm2 for spring steels)



THE NEOTIA UNVERSITY
MECHANICAL ENGINEERING DEPARTMENT

EXPERIMENT NO. : 04
NAME OF THE EXPERIMENT: Hardness Tests: Rockwell
Theory:

Rockwell hardness test is one of the static hardness testing methods using indentation depth as a
measuring criterion. Basically, two types of indenter are used; one Diamond spheroconical (Brale)
indenter with an angle of 120 O and a spherical tip of 0.2mm; second is steel ball indenter with diameters
as 1/16,1/8, 1/4, ¥ inches. Rockwell Test works on the principle of major and minor load where we first
apply a minor load (10 kg for regular test and 3 kg for superficial tests) to the sample that minimizes the
surface preparation and minor defects; then a major load is applied for some dwell time which is removed
after the dwell period and a differential depth (incremental depth) is observed. A dial is attached to the
testing machine which gives the arbitrary hardness number during the whole process. To cover a different
hardness range with varying penetration, the dial has different scales like A, B, C, D etc. on the basis of
indenter and load used. The most general dial has Scale C&A for Brale Indenter and load 150 &60
respectively; a B scale for steel ball {(1/16 inches diameter) and 100 kg load. The dial also consists of a
minor pointer for minor load indications.

The formula applied to find the Rockwell hardness (RH) are:
Regular Rockwell hardness: HR = 100 —h /0.002 (For Brale indenter)

HR =130 -h /0.002 (For Steel Ball indenter)

Where h is the incremental depth



THE NEOTIA UNVERSITY
MECHANICAL ENGINEERING DEPARTMENT

EXPERIMENT NO. : 05
NAME OF THE EXPERIMENT: Hardness Tests: Brinell

Theory:

Brinell test methods are defined in the following standards: ASTM E10 and ISO 65086. It is
recommended that operators have a current copy of the relevant standards, which are updated
regularly.

The Brinell hardness test consists of applying a constant load or force, usually between 187.5
and 3000Kgf, for a specified time (from 10 - 30 seconds) typically using a 2.5 or 10mm diameter
tungsten carbide ball.

Brinell hardness testing is typically used in testing aluminum and copper alloys (at lower forces)
and steels and cast irons at the higher force ranges. As the Brinell test uses relatively high loads,
and therefore relatively large indent, it is frequently used to determine the hardness in
circumstances where the overall material properties are being ascertained and local variations in
hardness or surface conditions make other methods un- suitable, such as forgings or castings of
large parts. Highly hardened steel or other materials are usually not tested by the Brinell method.

Due to the wide number of ball sizes and loads available, it is possible to test a very wide range
of hardness values using the Brinell method. This is constrained by the indenter ball itself, which
can become deformed by testing harder materials.

The formula applied to find the Brinell hardness {(BHN) are:

BHN = 2L / nD/2(D - V(D2 - d2))



THE NEOTIA UNVERSITY
MECHANICAL ENGINEERING DEPARTMENT

EXPERIMENT NO. : 06

NAME OF THE EXPERIMENT: Tension test and compression test of ductile and brittle materials: stress-strain
diagram, determination of yield strength, ultimate strength, modulus of elasticity, percentage elongation and
percentage reduction in areas, observation of fractured surfaces.

Theory:

Tensile tests are used to determine how materials will behave under tension load. In a simple tensile test,
a sampleis typically pulled to its breaking point to determine the ultimate tensile strength of the material.
The amount of force (F) applied to the sample and the elongation {AL) of the sample are measured
throughout the test. Material properties are often expressed in terms of stress (force per unit area, o) and
strain (percent change in length, £). To obtain stress, the force measurements are divided by the sample’s
cross-sectional area (o = F/A). Strain measurements are obtained by dividing the change in length by the
initial length of the sample (g = AL/L). These values are then presented on an XY plot called a stress-strain
curve. Testing and measuring procedures vary based on the material being tested and its intended
application. The idea of a tensile test is to place a sample of a material between two fixtures called ‘grips’
which clamp the material. The material has known dimensions, like length and cross-sectional area. The
tensile testing instrument then begins to apply weight to the material gripped at one end while the other
end is fixed. The load is continuously increased, while at the same time, the in-built controller measures

the change in length of the sample and simultaneously generates the stress-strain plot.
APPARATUS

¢ Universal test machine frame
¢ Load cell

e Controller and/or indicator

® Proper grips

¢ Rubber bands

e Extensometer

¢ Specimen samples (dog-bone shaped)

The universal test machine frame provides the structure and rigidity needed to pull the sample apart at
the desired rate. Frames are available in both electromechanical and servo-hydraulic configurations with
a wide range of capacities. The frame used must be able to withstand the amount of force needed to test
the sample. Load cells measure the amount of force being applied to the sample. Depending on the system
setup, a controller or an indicator is needed. Controllers, as the name implies, control how the test frame
behaves during testing, including test speed and displacement. Indicators capture and display the test
data but do not control the machine. There are many types of grips and fixtures available for tension



testing. Different materials require different fixturing to properly hold them. For example, a sample made
of metal requires different grips than rubber due to how the materials behave as tensile forces are
applied. Selecting the correct grips is crucial in achieving accurate results.

PROCEDURE :

Universal Tensile Testing Machine is used for this experiment. A material is gripped at both ends by an
apparatus, which slowly pulls lengthwise on the piece until it fractures. The pulling force is called a load,
which is plotted against the material length change, or displacement. The load is converted to a stress
value and the displacement is converted to a strain value. The gauge width, thickness, and length of each
sample was measured with a pair of Vernier calipers before the experiments were performed. The sample
is placed at the bottom grip. While still holding it vertically with one hand, the another hand is used to
turn its handle in the closing direction as tightly as possible. It is important that the specimens are tightly
gripped onto the specimen grips to prevent slipping, which will otherwise result in experimental errors.
Also, the specimen must be vertically aligned, if not a torsional force, rather than axial force, will result.
An extensometer is attached carefully to monitor strain.A crosshead speed of Imm/min is maintained.
The experiment is then initiated with the help of the software, and the load is gradually applied.
Simultaneously, the stress-strain curve appears on the screen. A plot of Force (kN) versus Stroke {mm) will
be generated in real-time during the experiment. The experiment stops with failure of the specimen.

Result & Discussion:

Draw a Strain- Strain diagram on available data and show the variation with the theoretical graph.



THE NEOTIA UNVERSITY

MECHANICAL ENGINEERING DEPART RENT

EXPERIMENT NO. : 07
MNAME OF THE EXPERIMENT: T orsion test
Theory:

Tarsion tests twist & materia or test component to a specified dagree, with a specified force, or until
the material fails in torsion. The twisting force of a torsion test is appliedto the test sample by anchoring
one end so that it cannot move or rotate and applving a moment to the other end =0 that the sample
is rotated about its axis. The rotating moment may also be applied to both ends of the sample but the
ende must be rotated in oppesite directions. The forces andmechanios foundin this test are similar to
those foundin a piece of string that has cone end held in.a hand and the other end twisted by the other,

The purposs of a torsion test is o detemine the Behavior & material or test sample exhibits when
twisted or under torsional forces as a result.of applied moments that cause shear stress about the
axis. Measurable values include: the modulus of elasticity in shear, vield shear strength, torsional
fatigue life, ductility, ultimata shear strength, and madulus of rupture inshear. These values are similar
but not the same as those measured by a tensile test and are important in manufactuing as they may
be used to simulate the service conditions, check the product's guality and design, and ensure that it
was manufactured cormecthy,

TYPES OF TORSIOMNTESTS:
Types of torsion testing vary from product to product but can usually be classified as:

Axial-Torsion: &pplying both axial (tension or compression) andtorsional forces to thetest specimen,
Torsion Only: &pplying only torsional [oads to the test specimen

Failure Testing: Twisting the product, component, or specimen until failure, Failure can be classified as
gither a physical break or a kinkfdefect in the specimen,

Proof Testing: &pplying a torsional load and holding this torgque load for a fixed amourt of time,

Calculation:

Force acts at a radius rthen the torgue produced is

dT = T X 2nridr

G =xr
=T
L

Since



dT = GE:Jxr*rr X 2ridr
_ (R,_G8 4
T= fu 2n—r dr
T—Enc—g Rrgl:lr'
L “0
&
L 4
R=§;
Maowe substituting
Then,
_ce
T= L]

Tr_Ge =
] L r

_c®
_L-

&

3z



THE NEOTIA UNVERSITY
MECHANICAL ENGINEERING DEPARTMENT

EXPERIMENT NO. : 08

NAME OF THE EXPERIMENT: Determination of Bending stresses

Theory:

In many ways, bending and torsion are pretty similar. Bending results from a couple, or a bending moment M, that is
applied. Just like torsion, in pure bending there is an axis within the material where the stress and strain are zero, This
is referred to as the neutral axis. And, just like torsion, the stress is no Iﬂﬁwumorm over the cross section of the
structure — it varies. Let's start by looking at how a moment abolt *hax;-axns bends a structure. In this case, we won't
limit ourselves to circular cross sections — in the figure below, we'll consider a prismatic cross section.

Y

Before we delve into the mathematics behind bending, let's try to get a feel for it conceptually. Maybe the be way to
see what's happening is to overlay the bent beam qﬂ'-iggg:-of the original, straight beam.

What you can notice now is thaﬁhe bottom surface of the beam got longer in length, while the to surface of the beam
got shorter in length. Also, along the center of the beamn, the length didnt change at all — corresponding to the neutral
axis. To restate this is the language of this class, we can say that the bottom surface is under tension, while the top
surface is under oompreaglﬂin. Something that is a little more subtle, but can still be ocbserved from the above overlaid
image, is that the dis| nent of the beam varies linsarly from the top to the bottom — passing through zero at the
neutral axis. Remen _‘_"é"r 1h|s is exactly what we saw with torsion as well — the stress varied linearly from the center to
the center. We caﬁ look &t this stress distribution through the beam’s cross section a bit more explicitly:




Now we can look for a mathematical relation between the applied moment and the stress within the beam. We already
mentioned that beam deforms linearly from one edge to the other — this means the strain in the x-direction increases
linearly with the distance along the y-axis (cr, along the thickness of the beam). So, the strain will be at a maximum in
tension at y = -c (since y=0 is at the neutral axis, in this case, the center of the beam), and will be at a maximum in

compression at y=c. We can write that out mathematically like this:

Y

Ex = ——Emax
{

Now, this tells us something about the strain, what can we say about the maximum values of the stress? Well, let's
start by multiplying both sides of the equation by E, Young's elastic modulus. Now our equation looks like:

b C B

0-92 amax

Using Hooke's law, we can relate those quantities with braces under them to the stress in the x-direction and the
maximum stress. Which gives us this equation for the stress in the x-direction:

Y

Or = = Omax

Our final step in this process is to understand how the bending moment relates to the stress. To do that, we recall that
a moment is a force times a distance. If we can imagine only looking at a very small element within the beam, a
differential element, then we can write that out mathematically as:

dM=ydF

Since we have differentials in our equation, we can determine the moment M acting over the cross-sectional area of
the beam by integrating both sides of the equation. And, if we recall our definition of stress as being force per area, we

can write:
. — / y dF :/ y(ogdA) :/ y (yomax) dA
A A A c
Omax 2
M, =22 [ 1244
c A

The final term in the last equation — the integral over y squared — represents the second moment of area about the z-
axis (because of how we have defined our coordinates). In Cartesian coordinates, this second moment of area is
denoted by / (in cylindrical coordinates, remember, it was denoted by J). Now we can finally write out our equation for
the maximum stress, and therefore the stress at any point along the y-axis, as:



_ M,
o-max - Iz
yM,
=

It's important to note that the subscripts in this equation and direction along the cross section
{here, itis measured along y} all will change depending on the nature of the problem, i.e. the direction of
the moment — which axis is the beam bending about? We based our notation on the bent beam show in
the first image of this lesson.

Remember at the beginning of the section when | mentioned that bending and torsion were actually quite
similar? We actually see this very explicitly in the last equation. In both cases, the stress {normal for
bending, and shear for torsion} is equal to a couple/moment {M for bending, and T for torsion) times the
location along the cross section, because the stress isn't uniform along the cross section {with Cartesian
coordinates for bending, and cylindrical coordinates for torsion}), all divided by the second moment of area

of the cross section.



