CMSIS-RTOS Tutorial

Introduction

This tutorial is an excerpt from “The Designers Guide to the Cortex-M Processor
Family” by Trevor Martin and is reproduced with permission of Elsevier. For
more details please see the Further Reading section at the end of this tutorial.

In this tutorial we are going to look at using a small footprint RTOS running on a
Cortex-M based microcontroller. Specifically we are going to use an RTOS that
meets the ‘Cortex Microcontroller Interface Standard” (CMSIS) RTOS
Specification. This specification defines a standard RTOS API for use with
Cortex-M based microcontrollers. The CMSIS-RTOS API provides us with all
the features we will need to develop with an RTOS, we only need to learn it once
and then can use it across a very wide range of devices. CMSIS-RTOS also
provides a standard interface for more complex frameworks (Java Virtual
Machine, UML). It is also a standard interface for anyone wanting to develop
reusable software components. If you are new to using an RTOS it takes a bit of
practice to get used to working with an RTOS but once you have made the leap
the advantages are such that you will not want to return to writing bare metal
code.

Getting Started- Installing the tools

To run the examples in this tutorial, it is first necessary to install the MDK-ARM
toolchain. First download the MDK-Core Version 5 using the embedded URL

below and run the installation file. Dositiioad

hitp://’www keil.com/mdk5/install

IMOK-Lite Version 5 with 32KB Code Size limit. Use a current Product

Senal Number (FSN) to activate other VDK Editions.
This installs the core toolchain which includes the IDE, compiler/linker and the
basic debugger. It does not include support for specific Cortex-M based
microcontrollers. To support a given microcontroller family we need to install a
‘Device Family Pack’. This is a collection of support files such as startup code,
flash programming algorithms and debugger support that allow you to develop
with a specific microcontroller family.

WV¥ision® |IDE with Editor ARM® CIC++ Compiler

Pack Installer

pVision® Debugger with Trace

MDK Core

The MDK-ARM toolchain
consists of a Core Installation
(IDE, Compiler and Debugger)
plus additional software packs
added through a pack installer

MDK-Professional Middleware

CMSIS-RTOS USB Device Graphics

Devi

7
IEi

Software Packs

CMSIS-BTOS Tutorial

In the exercises we are going to use an STM3ZF103EE so we need to install
suppott for this dewice using the ‘Pack Installer’ wathin the pVision IDE. When
the MDE-Core finishes installing the pack installer wall start automatically,
alternatively you can start the pVison IDE and access Pack Installer from the
toolbar by pressing the icon shown below

% Pack hstaller lcon

Once the pack installer 15 open 1t wall connect to cloud based pack database and
dizplay the availlable device packs.

2 —
o P The Pack Installer.
il £ Use this utility to
R ingall device support
! and third party
softwar e components

Select the Keall: STAM32F I:m DFP and press the install button. This wall take a
fewr minuites to download and install the ST 32F 1zx support files.

Hohrlil il ks L F [3 el s bicsssdranicz 51702 U Senss Gence sopeent a7d Lameles
0 Fo TR L DA aF bkl FETh cd aigriza STREEL S Do Sopoal Diivas o Erar e In=tall SJl:ll:ll:lrt far the

HeRe e F Ui immal | ket iee G e eara v e, B ans o STH32F 1o Family

If the pack installer has any problems accessing the remote pack you can
download it matually using the URL helow

http:fiwrerar kel corddd2/Packs

e R : =
» STMicreccerreniss STYREF 1 S0t os Dowios Suppart Drivers ard Excrples &R ERg- v E

CMSIS-RTOS Tutorial

Again select the STM32F Ixx pack and save it to your hard disk. The file may be
saved as a .zip file depending on the browser you are using. If it is saved as a .zip

change the .zip extension to .pack, vou can then install it locally by double
clicking on the STM32F1xx.pack file.

Installing the examples

The examples for this tutorial are provided as a CMSIS pack. You can install the
pack into the MDK-ARM by simply double clicking on the
Hitex. CMSIS RTOS Tutorial.1.0.3. pack file:

Pack Unzip: Hitex CMSI3_RTOS Tutorisd 103 ﬂ

Welcome to Keil Pack Unzip |
Flekass B72015

Thig program inatats tha Satwan Pack

Hite: CHEIS_RTOS_Tutosial 1.0
An Introduction 10 using CMSIS RTOS for Coteedd Mooconrolars

Once the pack has started
installing click next

Deatnision Folder

e B AP CR A CMEVE R TORL Turona | 07
Hext 3 Cancel
Prck Uncips Hites CMEE3_RR05 Tutceiel 113 - i
License Agreement

Fleaga raed the foliosing 1oarse agrament cerenlhy

Toi confinua with SETUIR, you misstaccspt the tarns ot e Licenss Agraamant To scoapl e sqrasmant dids
HRrHRT: b bR

(This tha cortaing 1he [ense soreame s 100 hieallowing stwens Earples:

! Here you must accept the license
THE BOFTWARE ISPROMOED A3 [E", WITHOLIT WARRANT Y OF ANY ERD, EXPIESE OR - - -
IWELIED INCLUDINGBUTNT LidiTED Tl THE WARFANTIES OF MEFCHANTAR LITY. | and again click next to continue
FITHESS FOR APARTICLLAR PURPOSE ARD HONRFRINGEMINT. IN D EVENTSHALL THE z e £
ALUTHORE DR COFYRIGHT HOLDERS BE LIKELE FORANY CLAM, DAMSGES OF 0THER the installation
LasiLl| v, WHE HEHINAN AL L U COMITHAL L, 1UK]L DR U THERWSE AHLS N FHUM,

QLT OF OF IM CONHECTION WITH THE SOFTWARE OF THE LEE DR OTHER DEALRNGS 1
THESCFTWARE

W lagrea itih Li

f [B | e Canzsl
l

Once the examples have been installed into MDK-ARM they are part of the
toolchain and can be accessed through the pack installer. The tutorial examples
can be found in the boards section under “CMSIS RTOS Tutorial’.

4] Devices | Boards | AR Packs ' Examples
1 Search: - X [Show examples from instalied Packs only
Board Summary Example /| Action
% B CMSIS_RTOS, Tutonal (V1.0) STM3ZFL03RB j Ex 1 First project (CMSIS_RTOS Tutorial) & Copy

CMSIS-RTOS Tutorial

What Hardware do | need?

Simple answer: none! The Keil toolchain contains simulators for each of the
Cortex-M processors. It also contains full simulation models (CPU + Peripherals)
for some of the earlier Cortex-M microcontrollers. This means we can run the
examples i the debugger using the simulation models and explore every aspect
of using the RTOS. In fact this method of working 1s a better way of learning
how to use the RTOS than going straight to a real microcontroller.

Overview

In this tutorial we will first look at setting up an introductory RTOS project for a
Cortex-M based microcontroller. Next, we will go through each of the RTOS
primitives and how they influence the design of our application code. Finally,
when we have a clear understanding of the RTOS features, we will take a closer
look at the RTOS configuration options. If you are used to programming a
microcontroller without using an RTOS i.e. bare metal, there are two key things
to understand as you work through this tutorial. In the first section we will focus
on creating and managing Threads. The key concept here 1s to consider them
running as parallel concurrent objects. In the second section we will look at how
to communicate between threads. In this section the key concept 1s
synchronization of the concurrent threads.

CMSIS-RTOS Tutorial

First steps with CMSIS-RTOS

The RTOS itself consists of a scheduler which supports round-robin, pre-emptive
and co-operative multitasking of program threads, as well ag time and memory
management services. Inter-thread communication iz supported by additional
RTOS objects, including signal triggering, semaphores, mutex and a mailbox
system. As we will see, interrupt handling can also be accomplished by
prioritized threads which are scheduled by the RTOS kernel.

Services

The RTOS kemel contains a
scheduler that runs program
code as tasks. Communication

Time
Events Management

N Scheduler between tasks is accomplished
L Semaphore J Memory by RTOS objects such as events,
; P 3 Management 4§ semaphores, mutexes and
Mustex mailboxes. Additional RTOS
Message Passing ISR Support g services include time and

memory management and
intermupt support

i

Accessing the CMSIS-RTOS API

To access any of the CMSIS-RTOS features in our application code itis
necessary to include the following header file

#include <<cmsis os.h>

Thig header file is maintained by ARM as part of the CMSIS-RTOS standard.
For the CMSIS-RTOS Keil RTX this is the default APT. Other RTOS will have
their own proprietary API but may provide a wrapper layer to implement the

CMBSIS-RTOS API so they can be used where compatibility with the CMSIS
standard iz required.

Threads

The building blocks of a typical ‘C* program are functions which we call to
perform a specific procedure and which then return to the calling function. In
CMBSIS-RTOS the basic unit of execution is a “Thread”. A Threadis very similar
to a *C” procedure but has some very fundamental differences.

CMSIS-RTOS Tutorial

unsigned int procedurs (void) void thread (void)
{ {
while(1}
""" {
return{ch}; y

} }

While we always return from our ‘C’ function, once started an RTOS thread must
contain a loop so that it never terminates and thus runs forever. You can think of
a thread as a mini self-contamed program that runs within the RTOS.

An RTOS program 1s made up of a number of threads, which are controlled by
the RTOS scheduler. This scheduler uses the SysTick timer to generate a periodic
interrupt as a time base. The scheduler will allot a certain amount of execution
tune to each thread. So threadl will run for Sms then be de-scheduled to allow
thread2 to run for a similar period; thread 2 will give way to thread3 and finally
control passes back to threadl. By allocating these slices of runtime to each
thread in a round-robin fashion, we get the appearance of all three threads
running in parallel to cach other.

Conceptually we can think of each thread as performing a specific functional unit
of our program with all threads running simultancously. This leads us to a more
object-orientated design, where each functional block can be coded and tested in
isolation and then mtegrated into a fully running program. This not only imposes
a structure on the design of our {inal application but also aids debugging, as a
particular bug can be easily isolated to a specific thread. It also aids code reuse
in later projects. When a thread 1s created, 1t 15 also allocated its own thread ID.
This is a variable which acts as a handle for each thread and is used when we
want to manage the activity of the thread.

osThreadld 1d1,1d2 1d3;

In order to make the thread-switching process happen, we have the code
overhead of the RTOS and we have to dedicate a CPU hardware timer to provide
the RTOS time reference. In addition, each time we switch running threads, we
have to save the state of all the thread variables to a thread stack. Also, all the
runtime information about a thread is stored 1n a thread control block, which 1s
managed by the RTOS kernel. Thus the “context switch time”, that 1s, the time to
save the current thread state and load up and start the next thread, is a crucial
figure and will depend on both the RTOS kernel and the design of the underlying
hardware.

Thread Control Thresd
Block Stack

Fnonty & State Cantext
St g Each thread has its own stack for saving

its data during a context switch. The
thread control block is used by the kernel
to manage the active thread.

Thread

CMSIS-RTOS Tutorial

The Thread Control Block contains information about the status of a thread. Part
of this information is its run state. In a given system only one thread can be
running and all the others will be suspended but ready to run. The RTOS has
various methods of inter-thread communication (signals, semaphores, messages).
Here, a thread may be suspended to wait to be signaled by another thread or
interrupt before it resumes its ready state, whereupon it can be placed into
running state by the RTOS scheduler.

At any given moment a

Running | The Currently Running Thread single thread may be
running. The remaining

threads will be ready to

Ready Threads ready to Run run and will be
scheduled by the

kernel. Threads may

Wait Blocked Threads waiting for an OS Event | 3156 be waiting

pending an OS event.

When this occurs they
will return to the ready
state and be scheduled
by the kernel.

Starting the RTOS

To build a simple RTOS program we declare each thread as a standard *C’
function and also declare a thread ID variable for cach function.

void threadl (void),
void thread?2 (void);

osThreadld thrdID1, thrdID2;

By default the CMSIS-RTOS scheduler will be running when main() is entered
and the main() function becomes the first active thread. Once in main(), we can
stop the scheduler task switching by calling osKernellnitialize (). While the
RTOS is halted we can create further threads and other RTOS objects. Once the
system 1s in a defined state we can restart the RTOS scheduler with
osKernel Start().

You can run any initializing code you want before starting the RTOS.

void main (void)

{
osKernellnitialize ();
IODIR1 = 0x00FF0000; /f Do any C code you want
Init Thread(); /{Create a Thread
osKernel Start(); //Start the RTOS

CMSIS-RTOS Tutorial

When threads are created they are also assioned a priority. If there are a numhber
of threads ready to run and they all have the same prionty, they will be allotted
tun time 1n a round-robin fashion Howewver, if a thread wath a higher prority
hecomes ready to run, the BTOS scheduler wall de-schedule the currentl v running
thread and start the high prionty thread runming Thiz 15 called pre-emphive
priotity-based scheduling When assgmng prionties you have to be careful
hecause the high prionty thread wall continue to run until it enters a wating state
or until athread of equal or higher prionty 15 ready to mun.

Threads of equal priority will be
Priovty L gl scheduled in a round-robin fashion
d o High priority tasks will pre-empt low
= priorty tasks and enter the running
TV | T2 iﬁ] !'“i L _]I_ T2 | state “‘on demand'.
['I'raum
Tirme

Exercise a first CMSIS-RTOS project

This project wall take you through the steps necessary to create and debug a
CMSIS-RTOS based project:

Start pVison and sdect Project = New pVison Project

|Prnject|FIash Debug Peripherals Tools

| Mew uiision Project...
Mew Multi-Project Workspace..,
Cpen Project,..

In the new project dialog enter a suitable project name and directory and
click Save

Next the device database will open. Navigate thr ough to the

STMicroelectronics:: STAM32F103: STMI2F103 RE

CMSIS-RTOS Tutorial

Jewioe curkrowns |Softwarn Foots. =
Took=t “urkromn:
T Ve STHcosectoricn
i Dovico: * STURFIDZRE
Desarictior: lockst: &KW
p— e
#-® el -] Seasthi: |
il Descrigtion:
iF @ SiliconLabs e P e T ——T——
£ % STMicroelectranics STMLEERE mmd:ﬁ-‘:vmaa’m:nyfnmu.umw 7
= %4 STMIZFL Series @ sTeuzFaRs Vo e SRR oo (g Wi g v
R S e @ pnr | hera SRR
w A sTMEzFIOL & sTFIEE A ke uire s uadd, o
e TR 8 STMIFIRRE sty s ot | |
B B STMIIFIRG ke Nt AU BELDTRN E |
= % STMEFIS i 3 TMIAETE | —_g:ﬂ.wmm.mﬂm"m
Tl F -5 \tokiEe L0
1l bl Il'}J'E § ol | T daceln Incenanst sncods ot =
T —
I |

Once you have selected this device click ok.

Once the microcontroller variant has been selected the Run Time Environment
Manager will open.

[Marge RunTime Emiconmens . AN, = ===

Software Compeonent Sel. Manant Version Description
& 4 Board Support _|_ O mcesivBze []100 i t Hoard 14 a
= OMSE - | Crartes Mi drolier Software intertace €

e = S i e T s N

¢ Dsp ’1‘ [143 | CMSIS-DSP Lsbrary fior Cortes-b4 SCO00. and SC300

= 4 RTOS (APD) ~y 10 | CMISIS RTOS AP for Cores-M, 5C000. and SCI00
¢ & | 4780 | CMSIS-RTOS BT impl ion for Coree-M, SC000. and SC300

= @ CMSIS Diiver | | Unified Device Drivers compliant te CMSIS-Drives Sgecifications
= Compiles | Am Campiler Software Extensions
@ 4 Data Exchange | | Software Components for Data Exchange
& 4 Device ’ | Gl Syaber St s
& Devers | Select packs 'ARM.CMISISE 0. snd 'Keil MOK-Middlewsre 515’ for ikt = |
4 | i
Validation Output Description

(e |] [| [|

This allows you to configure the platform of software components you are going
to use in a given project. As well as displaying the available components the RTE
understands their dependencies on other components.

To configure the project for use with the CMSIS-RTOS Keil RTX, simply
tick the CMSIS::RTOS (API):Keil RTX box.

10

CMSIS-RTOS Tutorial

Software Component Sel,
& 4 Board Support
=& CMSIS
¥ CORE C
¥ Dsp C
= 4¢ RTOS (AP

Thizs will cause the selection box to turn crange meaning that additional
components are required The required component will be displayed in the
Walidation Cutput wandowr.

Wxidnting Cntrat e
I 2R EERTCSKGI RIS Arvitiana anlima samimere oo i
| e B Sater O e hd
§ BkDoie Sk Swctoom Sowiap Fer STR Ao cl oy s STMEZELaa o aactica

To add the missing components you can press the Eesolve button in the bottom
left hand comer of the ETE. This will add the dewice startup code and the ChETE
Core support. When all the necessary components are present the selection
column will turn green.

k4 Maige Rar T Briasnol)
[T — Tl Vmrant Ve, Daserpbiee
|z e is faimred | e b pALEn Km T mqreiesk e BECISTRA 1 -
L [= ot e St bl L Commaniy
% ona (5 | 1) SARE I Bor ke TN ’
¥ r | 145 2
o i e :_ r: LR 0 AR et ek NTRD ane R
 ELE [ATED OB ETOS BT wopunerainn o Syt 5 EII00 s SO0
| S Tt e | - e e T e
J & Dl AR Corpines Solleaar Pl
| =14 CatsLuchangs Ry | Sottvare Compaerts bor Cets Lechangs
| Saring G e e
& e I | TEE DB dvis ol b B B Dura (M2AL 5nice
@ r SEE RIS dbonr cmed e IO Drsmendin TR Teriee
@ St r | T m Ve Shpge b TR R s S THE L Shore i]
et d
i Culpas Dacrirkmn
embes | |Bect-sda | bdos | [] i | e

It 1z alse possible to access a components help files by clicking on the blue
hyperlink in the Description column.

Now press the OK button and all the selected components will he added to
the new project

CMSIS-RTOS Tutorial

Project 4 @
= “1§ Project: firstRbProject
=g Targetl
.1 Source Group 1
B CMSIS
ﬁ RTX_CM3.lib (RTOS:Keil RTX)
@ L] RTX_Conf CM.c (RTOS:Keil RTX)
=l "'\?,'? Device
|] RTE_Deviceh (Startug)
J startup_strn32f10x_md.s (Startup)
3] j systern_strn32f10x.c (Startup)

The CMSIS components are added to folders displayed as a green diamond.
There are two types of file here. The first type is a library file which 1s held
within the toolchain and is not editable. This file is shown with a yellow key to
show that it is “locked’ (read-only). The second type of file is a configuration file.
These files are copied to your project directory and can be edited as necessary.
Each of these files ¢an be displayed as a text files but it is also possible to view
the configuration options as a set of pick lists and drop down menus.

To see this open the RTX Conf CM.c file and at the botiom of the editor
window select the ‘Configuration Wizard’ tab.

I = F S
!l\Text Editor I.-ﬂ Configuration Wizard f

12

CMSIS-RTQS Tutorial

Click on Expand All to see all of
pick list:

] RTX Conf CM.c

the configuration options as a graphical

Option

= Thread Configuration
Mumber of concurrent running user threads
Default Thread stack size [bytes]
Main Thread stack size [bytes]
Mumber of threads with user-provided stac...
Total stack size [bytes] for threads with user..
Stack overflow checking
Stack usage watermark
Processor mode for thread execution

[#- RTX Kernel Timer Tick Configuration

#-System Configuration

For now it is not necessary to make

Bpand Al | Collapse Al Help

I~ Show Grid

Value

6
200
200
0

0

rd
-

Privileged mode

any changes here and these options will be

examined towards the end of this tutorial

Our project contains four configuration files three of which are standard CMSIS

files

Startup STM32F10x_md.s

Assembler vector table

System STM32F10x.c

C code to initialize key system
peripherals, such as clock tree, PLL
extemal memory interface.

RTE Device.h

Configures the pin multiplex

RTX Conf CM.c

Configures Keil RTX

Now that we have the basic platform for our project in place we can add some
user source code which will start the RTOS and create arunning thread.

To do this right-click the ‘Source Group 1’ folder and select ‘Add new item

to Sonrce Group 1’

CMSIS-RTOS Tutorial

2% Project: firstRtxProject

=l s Targetl
3 Source Group 1
= ‘@ ChSIS 932\ Cptions for Group "Source Group 1'.., Alt+F7
BT RTH_CM3. |
Add New Item to Group 'Source Group 1'... |
#-[1 RTX.Conf. —
i : Add Existing Files to Group "Source Group 1.,
= @ Device

In the Add new Item dialog select the User code template’ Icon and in the
CMSIS section select the ‘CMSIS-RTOS ‘main” function’ and click Add

Add New Yern to Group Souree Group 1 - ﬁl
&dd tenplate filz{s] bo the proect.
ﬂ U Hia e : -
T Componont | Name
E Lo il Loom) o % om | %
E rER TR i A C\.ﬂ:’:{_Sl-.IE.'lFOS'main' furctior
- F {pil FT# CRASIS-RTOS Mail Quene
ﬂ Head=r Til= Chi RTCSHel BT CHEE RTOS Memory Mol
N ETZ8keil ETX CABIS-RTOE Meccage Queuz
ﬂ TestHer(rsl) RTOSKel A0 EAINA-RTOS Murer
ng e i 4% RTCSKeil FTK CMBIE-RTOS Semaakore
"'J: RiCkkalk X CNHS RS (hrcae
ﬂ‘;‘l Uszer Coce Tempats RTZ%Keill RTX IZMEIE-RTOE Trer
ET O SKeil BTH CAIES-RTOS L SWT j
Ty e Uszer Coce Templat=
Mame 1 catifvecis. b mEn.c
Locakiom: 1 Cel¥or il fica futss
Add Qe | we |

Repeat this but this time select ‘CMSIS-RTOS Thread’.
This will now add two source files to our project main.c and thread.c

= ¥ Project: firstRixProject
= g3 Target1
B & Source Group1
[+ _J main.c

@] Thread.c

Open thread.c in the editor

We will lock at the RTOS definitions in this project in the next section. For now
this file contains two functions Init Thread() which is used to start the thread
running and the actual thread function.

14

CMSIS-RTOS Tutorial

Copy the Init_Thread function prototype and then open main.c

Main contains the functions to initialize and start the RTOS kernel. Then unlike a
bare metal project main 1s allowed to terminate rather than enter an endless loop.
However this 1s not really recommended and we will look at a more elegant way

of terminating a thread later.

In main.c add the Init Thread prototype as an external declaration and then
call it after the osInitilizeKernel function as shown below.

#define 0sObjectsPublic

#include "osObjects.h"

extern int Init_Thread (void);

int main (veoid) {
osKernellnitialize ();
Imit_Thread ();
osKernelStart ();

!

Build the project (F7)

ffAdd this line

/1Add this line

In this tutorial we can use the debugger simulator to run the code without the

need for any external hardware.

Highlight the Target 1 root folder, right click and select options for target 1

Select the debugger tab

This menu 1s in two halves the left side configures the simulator the right half
configures the hardware debugger

Select the Simulator radio button and check that ‘Dialog DLL’ is set to
DARMSTM.DLL with parameter -pSTM32F103RB

CMSIS-RTOS Tutorial

@ Opers o T o 1 T S e
Dovice | Taget | Oupt | Usting | User | ©/Cos | fam | Linker Dot | Laiibes |

Settings || (" Use: [ULINKG/ME Cotex Debugoer =] Settege
™ Limt Speedt> Raak-Time
F Lood Applcaiion at ot Fun o main) ¥ Lood Aoplication of e Runto main)
inealzsion Fe Intistzator: Fle
| SN e |
Restors Debug Seasion Seifings || |- Restors Debug Sessior: Seitrga

W Breskpoints W Toobex

¥ Waich Windowa
¥ Memory Daplay ¥ Siystom Viewes

& Watch Windows & Pedomance Archizer

& freakprints I Tosbox
¥ Memory Dissley . W System Viemer

CPUDLL: Fonreier Deiver DL Parameter:
[oNBE [| [eRwoWBi|
vy T Farnrater Disieg DLL: Parameter:
DAAMSTM OLL |pSTMIZ 10358 J‘.I'.‘\P.MSIN.DLL IpSTH33103RE
= A T

Click ok to close the options for target menu
Start the debugger (Ctrl+F5)
This will run the code up to main

Open the Debug = OS Support = System and Thread Viewer

Sy N
Property Value
Tick Timer: 11,000 mSec
Round Robin Timeout: 5,000 mSec
Default Thread Stack Size: 1200
| Thread Stack Gverfiow Checke [Yes
ThvesdUsage e Vi3 oxidiedemen
|

Pronty | Delay Event Value | Event Mask | Stack Usage

This debug view shows all the running threads and their current state. At the
moment we have three threads which are main, os idle demon and
osTimerThread.

Start the code running (F5)

| Priority | Delay Event Value |Event Mask | Stack Usage
1 | osTimerThread High Wait_ MBX | 132%
|3 |Thread Normal Running

i'zss [os_idle_dernon [None Ready 122%

16

CMSIS-RTOS Tutorial

Now the user thread 1s created and main is terminated.
Exit the debugger

While this project does not actually do anything it demonstrates the few
steps necessary to start using CMSIS-RTOS

Creating Threads

Once the RTOS is running, there are a number of system calls that are used to
manage and control the active threads. By default, the main() function is
automatically created as the first thread running. In the first example we used it
to create an additional thread then let it terminate by running through the closing
brace. However, if we want to we can continue to use main as a thread 1n its own
right. If we want to control main as a thread we must get its thread ID. The first
RTOS function we must therefore call i osThreadGetId() which returns the
thread ID number of the currently running thread. This 1s then stored in its 1D
handle. When we want to refer to this thread m future OS calls, we use this
handle rather than the function name of the thread.

osThreadld main id; //create the thread handle
void main (void)

{

/* Read the Thread-ID of the main thread */
main_id = osThreadGetld ();

while(1)

Now that we have an ID handle for main we could create the application threads
and then call osTerminate(main id) to end the main thread. This is the best way
to end a thread rather than let it run off the end of the closing brace. Alternatively

CMSIS-RTOS Tutorial

we can add a while(1) loop as shown above and continue to use main in our
application.

As we saw in the first example the main thread is used as a launcher thread to
create the application threads. This is done in two stages. First a thread structure
1s defined; this allows us to define the thread operating parameters.

osThreadld threadl id; /fthread handle
void threadl (void const *argument); /ffunction prototype for threadl

osThreadDef{threadl, osPriorityNormal, 1, 0); //thread definition structure

The thread structure requires us to define the name of the thread function, its
thread priority, the number of instances of the thread that will be created, and its
stack size. We will look at these parameters in more detail later. Once the thread
structure has been defined the thread can be created using the osThreadCreate()
API call. Then the thread is created from within the application code, this is often
the within the main thread but can be at any point in the code.

threadl _id = osThreadCreate{osThread(threadl), NULL);

This creates the thread and starts it running. It is also possible to pass a parameter
to the thread when it starts.

uint32_tstartupParameter = 0x23;
threadl id = osThreadCreate(osThread(threadl), startupParameter);

When each thread is created, it is also assigned its own stack for storing data
during the context switch. This should not be confused with the native Cortex
processor stack; it is really a block of memory that is allocated to the thread. A
default stack size 1s defined in the RTOS configuration file (we will see this later)
and this amount of memory will be allocated to each thread unless we override it
to allocate a custom size. The default stack size will be assigned to a thread if the
stack size value in the thread definition structure is set to zero. If necessary a
thread can be given additional memory resources by defining a bigger stack size
in the thread structure.

osThreadDef{threadl, osPriorityNormal, 1, 0); /fassign default stack size to this thread

osThreadDef{thread2, osPriorityNormal, 1, 1024); /fassign 1KB of stack to this thread

CMSIS-RTOS Tutoria

However, 1f you allocate a larger stack size to a thread then the additional
metnory must be allocated in the RTOS configuration file; again we will see thiz
later

Exercise creating and managing threads

In this project we wall create and manage some additional threads. Each of the
threads created will toggle a GPIO pin on GPIO port B to stmulate flashing an
LED. We can then wew this actiwity in the simulator,

To access the exercise projects open the pack installer from wathin iVision.

&

e Fuch st TR B R

b =mx: dasdrs g

RE | e Tram G AT

| Twarm neam . | e AT

at R | e caanibravaldizd el st e

fanvraag =-|-|| f
P oe Bl 2 J'.‘.I. ol -.I_i\.:..'.'_l.l Hll e |.|'|-\l l.'-\.1 L.u. H.l. Hll l\.__l._l]«_:_ 0| _.I‘l I|.|.._I\.J.". LR BH S Il\!.uil :E“‘ :'H-:l 2
MOt R T P R T Tu e = Thae o, TR STTS T
CR T H TET, ST N 5 Rl T TR Lok ' “rd Rvirple T aenee: R T \1[E.l .1'[
LR ST | STt - R EEF T SR | F: R | % EA ol e B RO 1 EPli s 18 | I | = e FEazecmed R 8 Tulzrad) f <
R P FERIRRT apuioncbms i i e e Rz s didl B g
B RuBeTIne i) SUhETEET R TT B P T R & Cips
AL e Fead 2 1 LI “od Serax CMUE RS Tinor] L 1Y
G REh BT PR T T RIETL 1T Rl _.J,I:._.Lu._.l_.! SR Ivewps agm GBI Ua heeral ﬂ o)
' E‘ ﬂm:ll s.r:l.m N N . | HI2aaaviet WA RIGD Ll
Tonia K Tobes il Sl S e S e 00 T Tl e Cagn
4 HL Ur-WIOIAT T) AT S Wl TS T 'l Tieciad ﬂ.’n’b
s R e B | WL o N BT LE TR T L i P [R Boepe |
v T bt DRS Ao LT il San: N BICY (L Uy
: y 5 % aws FUEE T T i T

a T U AT WA (e I sl L LY R T ik o b (T TR i.’- -
F P LA e e B EURE PR T TR b o N0 I ST I - e |
P T o il (AL al gt B R RS R b e SUSCR L [N &= o
w I omnu sk el WY L L T g ML ETO T i T
-; TR Tra [B LR S A Rl T e MO BT T el 9 Tags

Select the boards tab and select the CHMSIS-ETOS Tutorial

Now select the examples tab and all the example projects for this tutorial
will be shown.

Todisplay then in order click on the grey ‘Example’ column head er
& reference copy ofthe first exercise 15 included as Exercize 1
Select “Ex 2 and 3 Threads™ and press the copy button.

This will install the project to a directory of yvour choice and open the projectin
p¥ision.

CMSIS-RTOS Tutorial

41’-

Open the Run Time Environment Mana ger

In the hoard support section the MCBSTMIZE:LED hox is ticked This adds
support functions to control the state of abank of LED s on the Microcontroller’s
GPIO pott B.

W o P Ter e - [
farliooe o Camizanicel bTL wuria Eadin Daiipizn
@ S Suawd MCETVEE Lok et
SF W T
¢ s 15
G LCC r LId
¥ et 158 !
2 Kivbezes 1K L | Cra ke R r.1:... FAAL dovdlzpmizti Uaess
LED e 1 Tl LED diiva Toa KoL RCBST S8 D ez nan Buand
¢ oaelinitn In-hil TIE e G0 Tt Besk msdacei b e S CERATY Dralpneclinan

When the BETOS starts main() runs as athread and in addition we will create two
additional threads. First we create handles for each of the threads and then define
the parameters of each thread. These include the prionty the thread will run
the number of instances of each thread we will create and its stack size (the
anount of memory allocated to 1t) zero indicates 1t will have the default stack
S1ZE.

osThreadld main 1T led I0V Jed TDV:

osThreadDefTled thread? osPriontyMommal, 1, 03

osThreadDefiled threadl, osPrioritstormal 1, 0F;

Then in the man) function the two threads are created

led IT2 = os ThreadCreate{os Thread(led threaddy HMUTLL);
led ID1 = o5 Threa dCreate(oeThread(led thresdl) NULLY),

When the thread is created we can pass it a parameter in place of the NULL
define.

Build the project and start the debugger

Start the code running and open the Debug =» O8 Support = System and
Thread Viewer

20

CMSIS-RTOS Tutorial

Now we have four active threads with one running and the others ready.
Op en the Debug = OS Support = Event Viewer
n“”“fu“fu’”*an“”hu”rn”‘u”“Ean””M“M’”*an”WWan””M’”ﬂ”*au”M”rhu”ru*”m*”“fu”“a

WmHHHHHHHHHHHHHHHHHHH
lIIULII'HIl”MlUUIlllIIUlj”"JLlIIULlIlUUFlllIIUUllllll"llllllUlJllllIIUljlllllUl..llluUllllIIULllllllllellllJLlllllllllllllllljljlllll'Jl..llll,lLllllllltlLlll”lllJUI

=T

g
=

re s wad? |

The event viewer shows the execution of each thread as a trace against time. This
allows you to visualize the activity of each thread and get a feel for amount of
CPU time consumed by each thread.

el

Ak e

Now open the Peripherals = General Purpose I0 = GPIOB window

R 15 Bts__ 8 7 Bis 0
GPIOB_IDR: 000000300 . [T TTT T [TTTTTTT
GPIOB_ODR: [0<00000300 " T T T T T W T T TTTTT

GPIOB_LCKR:[®00000000 [[T TTTTTT (TTTTTTT

Pins: [300000300 T T Ter T

Our two led threads are each toggling a GPIO port pin. Leave the code running
and watch the pins toggle for a few seconds.

If you do not see the debug windows updating check the view'periodic window
update option is ticked.

CMSIS-RTOS Tutorial

void led thread? (void const *argument) {
for ;) {
LED On(1};
delay(500);
LED Offf1);
delay(500);
1

Each thread calls functions to switch an LED on and off and uses a delay
function between each on and off. Several important things are happening here.
First the delay function can be safely called by each thread. Each thread keeps
local variables in its stack so they cannot be corrupted by any other thread.
Secondly none of the threads enter a descheduled waiting state, this means that
cach one runs for its full allocated time slice before switching to the next thread.
As this is a simple thread most of its execution time will be spent in the delay
loop effectively wasting cyeles. Finally there is no synchronization between the
threads. They are running as separate ‘programs’ on the CPU and as we can see
from the GPIO debug window the toggled pins appear random.

Thread Management and Priority

When a thread is created it is assigned a priority level. The RTOS scheduler uses
a thread’s priority to decide which thread should be scheduled to run. If a number
of threads are ready to run, the thread with the highest priority will be placed in
the run state. If a high priority thread becomes ready to run it will preempt a
running thread of lower priority. Importantly a high priority thread running on
the CPU will not stop running unless it blocks on an RTOS API call or is
preempted by a higher priority thread. A thread’s priority is defined in the thread
structure and the following priority definitions are available. The default priority
is osPriorityNormal

22

CMSIS-RTOS Tutorial

CMSIS-RTOS Priority Levels

osPriorityldle

osPriorityLow

osPriorityBelowNormal

osPriorityNormal

osPriority AboveNormal

osPriorityHigh

osPriorityReal Time

osPriorityError

Once the threads are running, there are a small number of OS system calls which
are used to manage the running threads. Tt is also then possible to clevate or
lower a thread’s priority either from another function or from within its own
code.

osStatus osThreadSetPrierity(threadlD, priomity);

osPriority osThreadGetPriority(threadID),

As well as creating threads, it 1s also possible for a thread to delete itself or
another active thread from the RTOS. Again we use the thread ID rather than the
function name of the thread.

osStatus = osThreadTerminate (threadlD1);

Finally, there 18 a special case of thread switching where the running thread
passes control to the next ready thread of the same priority. This is used to
implement a third form of scheduling called co-operative thread switching.

osS3tatus osThread Yield()://switch to next ready to run thread

CMSIS-RTOS Tutorial

Exercise creating and managing threads 11

In this exercise we will look at assigning different priorities to threads and also
how to create and terminate threads dynamically.

Go back to the project “Ex 2 and 3 Threads” Change the priority of LED
Thread 2 to Above Normal

osThreadDef(led thread2, osPriorityAbovelNormal, 1, 0);

osThreadDef(led threadl, osFriorityMNormal, 1, O);
Build the project and start the debugger
Start the code running

Open the Debug = OS Support = Event Viewer window

Al Tasks led_thread? (2)

led_thread2 (2)

| J H % !) H H |
01289738 s 0139738 =

Here we can see thread2 minning but no sign of threadl. Looking at the coverage
monitor for the two threads shows us that led threadl has not run.

24

CMSIS-RTOS Tutorial

NotExecuted ——>

5 » 12 (void const Targument)
sa | for (::)
52 | ‘IB_CT‘.I.'};
Executed 53 delay(S02);
54 LED Of£f(3) 7
55 delay(s00):

Led threadl is running at normal priority and led thread? is running at a higher
priority so has pre-empted led threadl. To make it even worse led thread2 never
blocks so it will run forever preventing the lower priority thread from ever
running.

Although this error may seem obvious in this example this kind of mistake is
very common when designers first start to use an RTOS.

Multiple Instances

One of the interesting possibilities of an RTOS is that you can create multiple
running instances of the same base thread code. So for example you could write a
thread to conirol a UART and then create two running instances of the same
thread code. Here cach mstance of the UART code could manage a different
UART.

First we create the thread structure and set the number of thread instances to two;

osThreadDef{threadl, osPriorityNormal, 2, 0);

Then we can create two mstances of the thread assigned to different thread

handles. A parameter is also passed to allow cach instance to identify which
UART it is responsible for.

ThreadID 1 0= osThreadCreate(osThread(threadl), UARTI1),
ThreadID 1 1 = osThreadCreate(osThread(threadl), UART2):

CMSIS-RTOS Tutorial

Exercise Multiple thread instances

In thiz project we will look at creating one thread and then create multiple
tuntirne instances of the same thread.

In the Pack Installer select “Ex 4 Multiple Instances” and copy it to your
tutorial directory.

This project performs the same function as the previous LED flasher program.
However we now have one led switcher function that uses an aroument passed as
aparamneter to decide which LED ta flash.

wioid ledSwitcher (void const *argurent) |

for (0 1
LED Onf{uint32_flargument);
delay(5007,
LED Offf{nint32 flarsurment);
delas 5007,
i

1

When we define the thread we adjust the instances parameter to two.
os Threa dDe {{ledS witcher, osPriontyomnmal, 2, 0};

Then in the man thread we create two threads which are different instances of
the same base code. We pass a different parameter which corresponds to the led
that will he toggled by the instance of the thread.

led 101
led 102

os ThreadCreateosThread{ledS wite her),(weoid *) 1 TIL),
os ThreadCreate{osThread{ledS witc her) (wooid *) 2171,

Build the code and start the debugger

Start the code running and open the RTX tasks and sy stemn window

255 os_idle_demon ! 0 . Ready
3 ledSwitcher 4 Ready
2 ledSwitcher 4 Running

26

CMSIS-RTOS Tutorial

Here we can see hoth instances of the ledSwitcher taslk each wath a different 1D

Examine the Call stack + locals window

- 9 ledSwitcher: 2 (08000318
F W delay (08000310
= % ledSwitcher h0B000324

[+ *¥ argument 000000001

= W ledSwitcher: 3 (h0B000318
F % delay (08000314
= % ledSwitcher Oh0B000338

[+ *¥ argument (0000002

Here we can see hoth instances of the ledSvatcher threads and the state of ther
variahles. A different argument has beesi passed to each instance ofthe thread.

Time Management

Az well as minning vour application code as threads, the ETOS also prowvides
some tirming services which can he accessed through BETOS system calls

Time Delay

The most hasic of these titning services 13 a ample timer delay function, This s
an easy way of prowviding titnung delays wathin vour application. Although the
ETOS kernel size 15 quoted as 5k bytes, features such as delay loops and simple
scheduling loops are often part of a non-ETOS application and would consume
code bytes anvway, so the overhead of the RTOS can be less than it immediately
appears.

woid esDelay (mnt32 1 rallizec)

This call wall place the calling thread into the WAIT DELAY state for the
specified number of rulliseconds. The scheduler wall pass execution to the next
thread in the READY state

CMSIS-RTOS Tutorial

Black Timeslice During their lifetime threads move

— — ,._/ through many states. Here a running

thread is blocked by an osDelay call

State READY READY I s0 it enters a wait state. When the
l WAIT delay expires, it moves to ready. The

scheduler will place it in the run
state. If its timeslice expires, it will
move back to ready.

TIME

When the timer expires, the thread will leave the wait delay state and move to
the READY state. The thread will resume running when the scheduler moves it
to the RUNNING state. If the thread then continues executing without any
further blocking OS calls, it will be descheduled at the end of its time slice and
be placed in the ready state, assuming another thread of the same priority is ready
to run.

Waiting for an Event

In addition to a pure time delay it is possible to make a thread halt and enter the
waiting state until the thread is triggered by another RTOS event. RTOS events
can be a signal, message or mail event. The osWait() API call also has a timeout
period defined in millisec that allows the thread to wake up and continue
execution if no event ocours.

ogStatus osWait (mnt32 tmilhsec)

When the interval expires, the thread moves from the wait to the READY state
and will be placed into the running state by the scheduler. osWait is an optional
api call within the CMSIS RTOS specification. If you intend to use this function
vou must first check it 15 supported by the RTOS you are using. The osWait AP
call 1s not supported by the Keil RTX RTOS.

Exercise Time Management

In this exercise we will look at using the basic time delay function

In the Pack Installer select “Ex S5 Time Management” and copy it to your
tutorial directory.

28

CMSIS-RTOS Tutorial

This 15 our oniginal led flasher program but the simple delay function has been
replaced by the osDelay APT call. LEDZ 1z togoled every 100m 3= and LEDI1 1z
toggled every S00mS

void ledDn (roid const *arguum ent) |
For (50 4

LED O=lYy,

osD elay(5000,

LED _Offil7y;

osDela 5000,

i

Build the project and start the debugger

Start the code running and open the event wewer window

main [1}

o A " ‘

Mow we can see that the activity of the code 18 very different. When each of the
LED tasks reaches the osDelay AFT call it “blocks” and moves to a waiting state.
The main task will be in a ready state so the scheduler will start it running. When
the delay peniod has ttmed out the led tasks will move to the ready state and will
be placed into the running state by the scheduler. This gives us a multi threaded
program where CPU runtime 1z efficiently shared between tasks.

CMSIS-RTOS Tutorial

Virtual Timers

The CMSIS-RTOS API can be used to define any number of virtual timers which
act as count down timers. When they expire, they will run a user call-back
function to perform a specific action. Each timer can be configured as a one shot
or repeat timer. A virtual timer is created by first defining a timer structure.

osTimerDef{timer0.,led function),

This defines a name for the timer and the name of the call back function. The
timer must then be instantiated in an RTOS thread.

osTimerld timer0_handle = osTimerCreate (timer(timer0), osTimerPeriodic, (void *)0);

This creates the timer and defines it as a periodic timer or a single shot timer
(osTimerOnce). The final parameter passes an argument to the call back function
when the timer expires.

osTimerStart (timerd handle,0x100);

The timer can then be started at any point in a thread the timer start function
mvokes the timer by its handle and defines a count period in milliseconds.

Exercise Virtual timer

In this exercise we will configure a number of virtual timers to trigger a callback
function at various frequencies

In the Pack Installer select “Ex 5 Virtual Timers” and copy it to your
tutorial directory.

This 18 our original led flasher program and code has been added to create four
virtual timers to trigger a callback function. Depending on which timer has
expired, this function will toggle an additional LED.

The timers are defined at the start of the code
osTimerDef{timer0)_handle, callback),
osTimerDef{timer] _handle, callback),
osTimerDef{timer2_handle, callback),

osTimerDef{timer3_handle, callback);

30

CMSIS-RTOS Tutorial

They are then initialized in the main function

osTimerld timer0 = osTimerCreate{osTimer(timer0 handle), osTimerPeriodic, (void *)0},
osTimerld timerl = osTimerCreate(osTimer(timer]l _handle), osTimerPeriodic, (void *)1};
osTimerld timer2 = osTimerCreate(osTimer(timer2 _handle), osTimerPeriodic, (void *)2);

osTimerld timer3 = osTimerCreate{osTimer(timer3_handle), osTimerPeriodie, (void *)3);

Each timer has a different handle and ID and passed a different parameter to the
common callback function

void callback(veid const *param){
switch((uint32 t) param){
case 0:

GPIOB->0ODR "= 0x8;
break;
case 1:

GPIOB->0DR "= 0x4;
break;
case 2:

GPIOB->0ODR 7= 0x2;
break;

case 3:

break;

}

When triggered, the callback function uses the passed parameter as an index to
toggle the desired LED.

In addition to the configuring the virtual timers in the source code, the timer
thread must be enabled in the RTX configuration file.

CMSIS-RTOS Tutorial

Open the RTX Conf CMLc file and press the configuration wizard tab

= System Configuration

- Round-Robin Thread switching [
= User Timers -
Tirner Thread Pricrity High
Tirner Thread stack size [bytes] 200
Timer Callback Quele size 4
ISR FIFO Queue size 16 entries

In the systern configuration section make sure the User Timers hox is ticked. If
this thread 13 not created the timers wall not worl

Build the project and start the debugger

Run the code and observe the activity of the GPIOE pins in the peripheral
window
—GPICE - y - == —— = =
6 Bis 2 7 Bis_ 0
GPIOB_IDR: [000000300 EEEEEE O EEEEEEEE
| GPIOB_ODR [Be00000302 s TT T T T T VW TTTTTT o7
|GPIOB_LCKR: [0<00000000 W[~ FTTTTTT T I TTTTTTT

Pins: [B00000300 [T T (T oM T ITTTTT

Thete will alzn be an additional thread running in the System and Thread Viewer

window
|Priority | State |Detay | DvertVeloe | Dvmct Mask | Stack Usegz
1 loshrerlhread | High [wrat pes | | | [EFES
|5 | leetHhreasl MHomma Wat AND ET (000 0%
4 ledihreads Marrna wat vy 2%
433 ||:~5 idle demor MHonc Ranning

The osDelay) fanction provides a relative delay from the point at which the
delay 15 started. The wirtual timers prowide an absolute delay which allows you to
schedule code to run a fized intervals

32

CMSIS-RTOS Tutorial

Sub millisecond delays

While the various CMSIS-RTOS time functions have a resolution of Imsec, it is
possible to create delays with a resolution in micro seconds using the raw
SysTick count. This form of delay does not deschedule the task, it simply halts its
execution for the desired period. To create a delay we can first get the SysTick
count.

int32 ttick delayPeriod;

tick = osKernel SysTick(); // get start value of the Kernel system tick
Then we can scale a period in microseconds to a SysTick count value
delayPeriod = osKernelTickMicroSec(100));

This then allows us to create a delay for the the required period.
do { // Delay for 100 microseconds

1 while {((osKernel SysTick() - tick) < delayPeriod);

Idle Demon

The final timer service provided by the RTOS isn’t really a timer, but this is
probably the best place to discuss it. If during our RTOS program we have no
thread running and no thread ready to run (e.g. they are all waiting on delay
functions) then the RTOS will use the spare runtime to call an “Idle Demon™ that
1s again located in the RTX Conf CM.c file. This 1dle code 1s in effect a low
priority thread within the RTOS which only runs when nothing else 1s ready.

void os idle demon (void)

for ;) {
/* HERE: include here optional user code to be executed when no thread runs. y

}

} /* end of 0s_idle demon */

You can add any code to this thread, but it has to obey the same rules as user
threads. The simplest use of the idle demon is to place the microcontroller into a
low-power mode when it is not doing anything.

CMSIS-RTOS Tutorial

void os_idle demon (void) {
_ wie();
1

What happens next depends on the power mode selected in the microcontroller.
At a minimum the CPU will halt until an interrupt is generated by the SysTick
timer and execution of the scheduler will resume. If there is a thread ready to run
then execution of the application code will resume. Otherwise, the idle demon
will be reentered and the system will go back to sleep.

Exercise Idle Thread

In the Pack Installer select “Ex 7 Idle” and copy it to your tutorial
directory.

This is a copy of the virtual timer project. Open the RTX_ Conf CM.¢ file and
click the text editor tab

Locate the os_idle_demon thread

void os_idle_demon (void) {

int32 ti;

for (3;) {

Hwfe();

iy

Build the code and start the debugger

Run the code and observe the activity of the threads in the event Viewer.

This is a simple program which spend most of its time in the idle demon so this
code will be run almost continuously

34

CMSI1S-RTOS Tutorial

edOre () N EEAEIERR @4

Idle {255)

You can also sce the activity of the 1dle demon in the event viewer. In a real
project, the amount of time spent in the 1idle demon 1s an indication of spare CPU
eycles.

Open the View = Analysis Windows = Performance Analyzer.

Frfamiance srzizar = ‘a.A
Mest | Ehoe: (Wit bz =]
Teaizb o e Je: | i |t B
o e s L T e R
[FEt s P A 1 PO R E——— -
| ok 1 WMro O — |
BE_t a uz [|
B Y R Rreeey 1 ur VR |
e rnad e L1 Tur I
BT R T [Tus oS
L. ekedid L1 Cuz o R

This window shows the cumulative run time for each function in the project. In
this simple project the os_idle demon is using most of the runtime because there
15 very little application code.

Exit the debugger

Remove the delay loop and the toggle instruction and add a _ wfe()
instruction in the for loop, so the code now looks like this.

void os_idle demon (void) {
fior (33 4

e,

3}

CMSIS-RTOS Tutorial

Rebuild the code, restart the debugger

Now when we enter the idle thread the wfe() (wait for interrupt) instruction
will halt the CPU until there is a peripheral or SysTick interrupt.

Performance &na lyzer

| Reset || Show:]Modules LJ
Module/Function | Calls Time{Sec) | Time{%2}
(= CMSISrixldle 11.456 ms 12x I
ot Listc 3805ms (1%]
+ At _Systemc 1.548 ms A |
*- _fit_Robin.c 1.570 ms e, |
F- HAL CM3c 1.256 ms 0% |
F-- At CMSI5.c 1.139 ms 0§
+ it _Taskc 1.0591 ms |
=1 RTE/CMSIS/RTA Conf CM.c 596.739us |D%
‘os_idle_demon | 1 596./309us (0%
08_emor o fus A
__user_pethread_libspace 1] us 0% |
_mutex_initialize 0 fus 0% |
_mutex_acquire 0 fus |
_mutex_release 1] Qus 0 |

Performance analysis during hardware debugging

The code coverage and performance analysis tools are available when you are
debugging on real hardware rather than simulation. However, to use these
features you need two things: First, you need a microcontroller that has been
fitted with the optional Embedded Trace Macrocell (ETM). Second, you need to
use Keil ULINK pro debug adapter which supports instruction trace via the ETM.

Inter-Thread Communication

So far we have seen how application code can be defined as independent threads
and how we can access the timing services provided by the RTOS. In a real
application we need to be able to communicate between threads in order to make
an application useful. To this end, a typical RTOS supports several different
communication objects which can be used to link the threads together to form a
meaningfill program. The CMSIS-RTOS API supports inter-thread
communication with signals, semaphores, mutexes, mailboxes and message
queues. In the first section the key concept was concurrency. In this section the
key concept is synchronizing the activity of multiple threads.

36 CMSIS-RTOS Tutorial

Signals

CMSIS-RTOS Keil RTX supports up to sixteen signal flags for each thread.
These signals are stored in the thread contrel block. It is possible to halt the
execution of a thread until a particular signal flag or group of signal flags are set
by another thread in the system.

Fun o Each thread has 16 signal flags. A
thread may be placed into a waiting
state until a pattern of flags is set by
walt — Tz another thread. When this happens, it

will return to the ready state and wait
to be scheduled by the kernel.

Sat Flags

The signal wait system calls will suspend execution of the thread and place it into
the wait_evnt state. Execution of the thread will not start until all the flags set in
the signal wait API call have been set. It is also possible to define a periodic
timeout after which the waiting thread will move back to the ready state, so that 1t
can resume execution when selected by the scheduler. A value of OxFFFF defines
an infinite timeout period.

osEvent osSignalWait (int32 t signals.uint32 t millisec):

If the signals variable 1s set to zero when osSignalWait is called then setting any
flag will cause the thread to resume execution. You can see which flag was set by
reading the osEvent.value. signals return value.

Any thread can set or clear a signal on any other thread.
int32 t osSignalSet (osThreadld thread id, int32 tsignals);

mt32 t osSignalClear (osThreadld thread id, int32 t signals);

CMSIS-RTOS Tutorial

Exercise Signals

In this exercise we will look at using signals to trigger activity between two
threads. Whilst this is a simple program it introduces the concept of
synchronizing the activity of threads together.

In the Pack Installer select “Ex 8 Signals” and copy it to your tutorial
directory.

This is a modified version of the led flasher program one of the threads calls the
same led function and uses osDelay() to pause the task. In addition it sets a signal
flag to wake up the second led task.

void led Thread?2 {void const *argument) {
for ;) {

LED On(2);

osSignalSet (T led ID1,0x013;
osDelay(500);

LED Offf2);

osSignal Set (T led TD1,0x01Y;

osDelay(500);} }

The second led function waits for the signal flags to be set before calling the led
functions,

void led Threadl (void const *argument) {
for (3:){

osSignal Wait (0x01,0sWaitForever),

LED _On(1);

osSignal Wait (0x01,0sWaitForever),
LED_Offf1);

1

38

CMSIS-RTOS Tutorial

Build the project and start the debugger
Open the GPIOB peripheral window and start the code running

Now the port pins will appear to be switching on and off together. Synchronizing
the threads gives the illusion that both threads are running in parallel.

This is a simple exercise but it illustrates the key concept of synchronizing
activity between threads in an RTOS based application.

RTOS Interrupt Handling

The use of signal flags is a simple and efficient method of triggering actions
between threads running within the RTOS. Signal flags are also an important
method of triggering RTOS threads from interrupt sources within the Cortex-M
microcontroller. While i1t 1s possible to run C code 1n an interrupt service routine
(ISR), this is not desirable within an RTOS if the interrupt code is going to run
for more than a short period of time. This delays the timer tick and disrupts the
RTOS kernel. The SysTick timer runs at the lowest priority within the NVIC so
there is no overhead in reaching the interrupt routine.

ISR teveiz |]

ISR teas [_] - 1]
ISRiese [| =1

Main [: 1 i 1]

A traditional nested interrupt scheme supports prioritised interrupt
handling, but has unpredictable stack requirements.

With an RTOS application it is best to design the interrupt service code as a
thread within the RTOS and assign it a high priority. The first line of code in the
interrupt thread should make it wait for a signal flag. When an interrupt occurs,
the ISR simply sets the signal flag and terminates. This schedules the interrupt
thread which services the interrupt and then goes back to waiting for the next
signal flag to be set.

CMSIS-RTOS Tutorial

ISR ez []
ISR w0 [] (N

E |SR 1 Th rea d preosety High
ISR O Thread prionty above normal l:l EI l:
T — [1 Round Robin Threads

jprierity nonmal

Within the RTOS, interrupt code is run as threads. The interrupt handlers signal
the threads when an interrupt occurs. The thread priority level defines which
thread gets scheduled by the kernel.

A typical interrupt thread will have the following structure:

void Thread3 (void)

{

while(1)

{

osSignalWait isrSignal waitF orever); /f Wait for the ISR to trigger an event
ey {/ Handle the mterrupt

} {f Loop round and go back sleep

}

The actual interrupt source will contam a minimal amount of code.

void IRQ Handler {void)
{
osSignalSet (tsk3,1srSignal); {f Signal Thread 3 with an event

}

Exercise Interrupt signal exercise

CMSIS-RTOS does not introduce any latency in serving interrupts generated by
user peripherals. However operation of the RTOS may be disturbed if you lock
out the SysTick interrupt for a long period of time. This exercise demonstrates a
technique of signaling a thread from an interrupt and servicing the peripheral
interrupt with a thread rather than a standard Interrupt service routine

40

CMSIS-RTOS Tutorial

In the Pack Installer select “Ex 9 Interrupt Signals” and copy it to your
tutorial directory.

In the main function we imitialize the ADC and create an ADC thread which has
a higher priority than all the other threads

osThread Def{adc Thread, osPriorityahoveMormal, 1, 07;

int main {void) {

LED Init (),

init ADC ()

T led ID1 = osThreadCreate({osThread{led Threadl), MULL),
T led IDZ2 = osThreadCreate(osThread(led Thread2), MULL);
T adc ID = osThreadCreate{osThread{adc_Thread), NULLY,

However, there is a problem when we enter main: the RTOS may be configured
to run the threads in unprivileged mode so we cannot access the NVIC registers
without causing a fault exception. There are several ways round this. The
simplest is to give the threads privileged access by changing the setting in the
RTX Conf CM.c

=1 Thread Configuration

Number of concurrent running threads 5
Default Thread stack size [bytes] 200
Main Thread stack size [bytes] 200
Number of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-provid... 0
Check for stack overflow v

Processor mode for thread execution Privileged mode

Here, we have switched the thread execution mode to privileged which gives the
threads full access to the Cortex-M processor. As we have added a thread, we
also need to increase the number of concurrent running threads.

Build the code and start the debugger

Set breakpoints in led Thread2, ADC Thread and ADC1 2 TRQHandler

CMSIS-RTOS Tutorial

57 | ozDelay (500} :
8 == | ADC1->CR2 |= (1UL << 22}:
59 | LED Off(2):

Andin adc Thread?)

S35 ' o25ignalWait [Ox01,o=sWaitForewvery;
@ 36 FPICE->0DR = ADCI1->DR:

Andin ADCL 2 Handler

28 Hwveoid ADC1 2 IRQHandler (woid}{
@ =20 . osS5ignalSet (T ade ID,Ox01);
Run the code

You should hit the first brealpoint which starts the ADC conversion, then run the
code agan and you should enter the ADC interrupt handler. The handler sets the
adc thread signal and gquits. Setting the signal will cause the ade thread to
preempt any other running task run the ADC service code and then block
wating for the next signal,

Exercise Keil RTX and SVC exceptions

Az we saw in the last example, when we are in a thread, it wall be running in
unprivileged mode The simple solution i3 to allow threads to fun i pravileged
mode but thiz allows the threads full access to the Cortex M processor potentially
allowing runtime errors. In this exercize we wall look at using the system call
exception to enter privileged mode to run “system level” code

In the Pack Installer select “Ex 10 Interrupt Signals” and copy it to your
tutorial directory.

Il the project we have added anew file called W C Tahles. This file 15 availahle
as a ‘User Code Template” (CRSIS-RTOS User SVC) from the “Add New Item’
dialog:

CMSIS-RTOS Tutorial

= 1§ Project: CMSISrbdnterruptSyC

=5 Targetl
=& Seurce Group 1 Lede Meve e o2 Group Thresds® [——
E-L] ledec L‘]-'lm— et e el te = v
-] main.c a Componers Hairs
” P et RTOSK s T7H CRAZIE- 1708 Muse 4
@ L1 SVC_Tables [Nl TGk 378 CRATE 3708 Semar aar
=4 CMsIs il I
BT RTH_CM3.lib (RTOS:Keil RT30 l et R
&[] RTX Conf_CM.c (RTOS:Keil RTX) JT"") 1 4 Frapaics
: ; id : A% helwmi
B4 Device !;ﬁ_lnwnr_‘) i
|1 RTE_Device.h (Startup) ﬁjll-n-rmhnnrm

£ startup_stm32f10x_md.s (Startup) =
[system_stm32f10x.c (Startup)

This 1s the look up table for the SVC interrupts
; Import uger SVC functions here.
IMPORT _ SVC 1
EXPORT SVC Table
SV C Table
; Ingert user SVC functions here. 5V C0 used by RTX Kernel.

DCD 8SVC 1 ; user SVC function

In this file we need to add import name and table entry for each SVC function
we are going to use. In our example we only need SVC 1

Now we can convert the ADC imt function to a service call exception
void _ sve(1) init ADC (void);

void _ SVC 1 (void){

Build the project and start the debugger

Step the code (F11) to the call to the init ADC function and examine the
operating mode in the register window,

Here we are in Thread mode, unprivileged and using the process stack

=1 Intemal

Mode Thread
Privilege Unprivileged
Stack PSP

States 4637

Sec 0.00008374

CMSIS-RTOS Tutorial

Now step into the function (F11) and step through the assembler until you
reach the init ADC C function

=t Intemal
- Mode Handler
" Privilege Privileged
Stack MSP
States 4687
Sec 0.0000:3443

Mow we are running in Handler mode wath pnvileged access and are using the
main stack pointer,

This dlows us the setup the ADC and also access the HVIC,

Semaphores

Like signals, semaphores are a method of synchronizing activity between two or
more threads. Put simply, a semaphore 15 a contaner that holds a number of
tokens As athread executes, it wall reach an ETOS call to acquire a semaphore
token. If the semaphore contains one or more tokens, the thread wall continue
executing and the number of tokens 1n the semaphore will be decremented by
one. If there are cutrently no tokens in the semaphore, the thread wall he placed
in a waiting state until a token hecomes availahle At any point in its execution, a
thread triay add a token to the semnaphore cansing its token count to increment by
OfLe.

Sermaphores hdp to control access to
program resowrces. Before a thread can
acCcess a resource, it must acquire a token

o % Scgure
(_L/ K none is available, it weits. When it is
finizhed with the resource, it must retum

“ KX»’"__H_ ' the token
\

x

Ripdris

44

CMSIS-RTOS Tutorial

The diagram above illustrates the use of a semaphore to synchronize two threads.
First, the semaphore must be created and initialized with an initial token count. In
this case the semaphore 1s initialized with a single token. Both threads will run
and reach a point in their code where they will attempt to acquire a token from
the semaphore. The first thread to reach this point will acquire the token from the
semaphore and continue execution. The second thread will also attempt to
acquire a token, but as the semaphore is empty it will halt execution and be
placed into a waiting state until a semaphore token 1s available.

Meanwhile, the executing thread can release a token back to the semaphore.
When this happens, the waiting thread will acquire the token and leave the
waiting state for the ready state. Once in the ready state the scheduler will place
the thread into the run state so that thread execution can continue. While
semaphores have a simple set of OS calls they can be one of the more ditficult
OS objects to fully understand. In this section we will first look at how to add
semaphores to an RTOS program and then go on to look at the most useful
semaphore applications.

To use a semaphore in the CMSIS-RTOS you must first declare a semaphore
container:

osSemaphoreld seml;

osSemaphoreDefisem]l);

Then within a thread the semaphore container can be mnitialised with a number of
tokens.

seml = osSemaphoreCreate{osSemaphore(seml), SIX TOKENS);

It 1s important fo understand that semaphore tokens may also be created and
destroyed as threads run. So for example you can initialise a semaphore with zero
tokens and then use one thread to create tokens into the semaphore while another
thread removes them. This allows you to design threads as producer and
consumer threads.

Once the semaphore is initialized, tokens may be acquired and sent to the
semaphore in a similar fashion to event flags. The os sem wait call 1s used to
block a thread until a semaphore token is available, like the os_evnt wait call. A
timeout period may also be specified with OxFFFF being an infinite wait.

CMSIS-RTOS Tutorial

osStatus osSemaphoreWait(osSemaphoreld semaphore_id, uint32_t millisec);

Once the thread has finished using the semaphore resource, it can send a token to
the semaphore container.

osStatus osSemaphoreRelease(osSemaphoreld semaphore_id);

Exercise Semaphore Signalling

In this exercise we will look at the configuration of a semaphore and use it to
signal between two tasks.

In the Pack Installer select “Ex 11 Interrupt Signals” and copy it to your
tutorial directory.

First, the code creates a semaphore called sem1 and initialises it with zero tokens.

osSemaphoreld seml;

osSemaphoreDef{seml);

int main (void) {

seml = osSemaphoreCreate(osSemaphore{seml), 0);

The first task waits for a token to be sent to the semaphore.

void led Threadl {void const *argument) {
for (3;)
osSemaphoreWait(sem1, osWaitForever);
LED_On(l);
0sDelay(500);
LED Offily;
}
i

While the second task periodically sends a token to the semaphore.

void led Thread?2 (void const *argument) {
for () {

LED On(2);
osSemaphoreRelease(seml),
0sDelay(500);
LED Offi2),
0sDelay(500);
H

46

CMSIS-RTOS Tutorial

Build the project and start the debugger

Set a breakpoint in the led_Thread?2 task

e

osSEmaphoreRelease (seml) ;

Run the code and observe the state of the threads when the breakpoint is
reached.

D _[Name ______[Prioriy [State |

255 | os_idle_demon 0 Ready

3 led_Threadl 5 Wait_SEM

2 led_Thread2 4 Running
1 main 4 -

Now led threadl is blocked waiting to acquire a token from the semaphore.
led 'Threadl has been created with a higher priority than led thread2 so as soon
as a token 1s placed in the semaphore it will move to the ready state and pre-empt
the lower priority task and start running. When it reaches the osSemaphore Wait()
call it will again block.

Now block step the code (F10) and observe the action of the threads and the
semaphore.

Using Semaphores

Although semaphores have a simple set of OS calls, they have a wide range of
synchronizing applications. This makes them perhaps the most challenging
RTOS object to understand. In this scction we will look at the most common uses
of semaphores. These are taken from “The Little Book Of Semaphores™ by Allen
B. Downey. This book may be freely downloaded from the URL given in the
bibliography at the end of this book.

Signaling

Synchronizing the exccution of two threads is the simplest use of a semaphore:

osSemaphoreld seml,

osSemaphoreDef{seml);

CMSIS-RTOS Tutorial

void threadl (void)

seml = osSemaphoreCreate(osSemaphore{seml), 0);

while(1)

{

FuncA();
osSemaphoreRelease(seml)

!
}

void task2 (void)
{

while(1)

osSemaphoreWait(seml,0sWaitForever)
FuncB();

!

i

In this case the semaphore is used to ensure that the code in FuncA() is executed
before the code in FuncB().

Multiplex

A multiplex is used to limit the number of threads that can access a critical
section of code. For example, this could be a routine that accesses memory
resources and can only support a limited number of calls.

osSemaphoreld multiplex;

osSemaphoreDeflmultiplex);

void threadl (void)
multiplex =osSemaphoreCreate(osSemaphore(multiplex), FIVE_TOKENS);

while(1) {

osSemaphoreWait{multiplex, osWaitForever)
ProcessBuffer();
osSemaphoreRelease(multiplex);

1

48

CMSIS-RTOS Tutorial

In this example we mitialise the multiplex semaphore with 5 tokens. Before a
thread can call the ProcessBuffer() function, it must acquire a semaphore token.
Once the function has completed, the token is sent back to the semaphore. If
more than five threads are attempting to call ProcessBuffer(), the sixth must wait
until a thread has finished with ProcessButfer() and returns its token. Thus the
multiplex semaphore ensures that a maximum of five threads can call the
ProcessBuffer() function “simultancously™.

Exercise Multiplex

In this exercise we will look at using a semaphore to control access to a function
by creating a multiplex.

In the Pack Installer select “Ex 12 Multiplex” and copy it to your tutorial
directory.

The project creates a semaphore called semMultiplex which contains one token.
Next, six instances of a thread containing a semaphore multiplex are created.

Build the code and start the debugger
Open the Peripherals = General Purpose 10 - GPIOB window
Run the code and observe how the tasks set the port pins

As the code runs only one thread at a time can access the LED functions so only
one port pin 1s set.

Exit the debugger and increase the number of tokens allocated to the
semaphore when it is created

semMultiplex = osSemaphoreCreate{os Semaphore(semMultiplex), 3);
Build the code and start the debugger
Run the code and observe the GPIOB pins

Now three threads can access the led functions ‘concurrently’.

CMSIS-RTOS Tutorial

Rendezvous

A more generalised form of semaphore signalling is a rendezvous. A rendezvous
ensures that two threads reach a certain point of execution. Neither may continue
until both have reached the rendezvous point.

osSemaphoreld arrived],arrived?2;
osSemaphoreDeflarrivedl);

osSemaphoreDeflarrived2);

void threadl (void){

Arrived] =osSemaphoreCreate{osSemaphore(arrivedl),ZERO_TOKENS);
Amived2 =osSemaphoreCreate{ osSemaphore(arrived2),ZERO TOKENS);
while(1){

FuncAl1();

osSemaphoreRelease{ Arnivedl),
osSemaphoreWait(Arrived? ,osWaitForever),

FuncA2();

1

void thread?2 (void) {

while(1){

FuncB1();

Os sem_send(Arrived?);

os_sem_wait{ Arrived] ,osWaitForever);,
FuncB2();

b

In the above case the two semaphores will ensure that both threads will
rendezvous and then proceed to execute Func A2() and FuncB2().

Exercise Rendezvous

In this project we will create two tasks and make sure that they have reached a
semaphore rendezvous before running the LED functions.

In the Pack Installer select “Ex 13 Rendezvous” and copy it to your tutorial
directory.

Build the project and start the debugger.

50

CMSIS-RTOS Tutorial

Open the Peripherals\(GGeneral Purpose IO\GPIOB window.

Run the code

Initially the semaphore code in cach of the LED tasks i1s commented out. Since
the threads are not synchronised the GPIO pins will toggle randomly.

Exit the debugger

Un-comment the semaphore code in the LED tasks.

Built the project and start the debugger.

Run the code and observe the activity of the pins in the GPIOB window.

Now the tasks are synchronised by the semaphore and run the LED functions
‘concurrently’.

Barrier Turnstile

Although a rendezvous 1s very useful for synchronising the execution of code, it
only works for two functions. A barrier is a more generalised form of rendezvous
which works to synchronise multiple threads.

osSemaphoreld count, barrier;
osSemaphoreDef{counter);
osSemaphoreDef{barrier);

unsigned int count;

void threadl (void)

{
count = osSemaphoreCreate(osSemaphore(count), ONE_ TOKEN);

barrier = osSemaphoreCreate(osSemaphore(barrier),ZERO TOKENS);
while(1}

/{Allow only one task at a time to run this code
osSemaphoreWait{counter),

count = count+l1;

if count — 5 os_sem_send(barrier, osWaitForever);

CMSIS-RTOS Tutorial

osSemaphoreRelease(counter);,

/fwhen all five tasks have arrived the barrier is opened
os_sem_wait(barrier, osWaitForever);
os sem send(barrier);

critical Function(};
H

In this code we use a global variable to count the number of threads which have
arrived at the barrier. As each function arrives at the barrier it will wait until it
can acquire a token from the counter semaphore. Once acquired, the count
variable will be incremented by one. Once we have incremented the count
variable, a token is sent to the counter semaphore so that other waiting threads
can proceed. Next, the barrier code reads the count variable. If this is equal to the
number of threads which are waiting to arrive at the barrier, we send a token to
the barrier semaphore.

In the example above we are synchronising five threads. The first four threads
will increment the count variable and then wait at the barrier semaphore. The
fifth and last thread to arrive will increment the count variable and send a token
to the barrier semaphore. This will allow it to immediately acquire a barrier
semaphore token and continue execution. After passing through the barrier it
immediately sends another token to the barrier semaphore. This allows one of the
other waiting threads to resume execution. This thread places another token in
the barrier semaphore which triggers another waiting thread and so on. This final
section of the barrier code is called a tumnstile because it allows one thread at a
time to pass the barrier. In our model of concurrent execution this means that
cach thread waits at the barrier until the last arrives then the all resume
simultaneously. In the following exercise we create five instances of one thread
containing barrier code. However the barrier could be used to synchronise five
unique threads.

Exercise Semaphore Barrier

In this exercise we will use semaphores to create a barrier to synchronise
multiple tasks.

In the Pack Installer select "Ex 14 Barrier' and copy it to your tutorial
directory.

Build the project and start the debugger.

52

CMSIS-RTOS Tutorial

Open the Peripherals\General Purpose IO\GPIOB window.k
Run the code.

Initially, the semaphore code in each of the threads is commented out. Since the
threads are not synchronised the GPIO pins will toggle randomly like in the
rendezvous example.

Exit the debugger.

Remove the comments on lines 34, 45, 53 and 64 to enable the barrier code.
Built the project and start the debugger.

Run the code and observe the activity of the pins in the GPIOB window.

Now the tasks are synchronised by the semaphore and run the LED functions
‘concurrently’.

Semaphore Caveats

Semaphores are an extremely useful feature of any RTOS. However semaphores
can be misused. You must always remember that the number of tokens in a
semaphore 1s not fixed. During the runtime of a program semaphore tokens may
be created and destroyed. Sometimes this is useful, but if your code depends on
having a fixed number of tokens available to a semaphore you must be very
careful to always return tokens back to it. You should also rule out the possibility
of accidently creating additional new tokens.

Mutex

Mutex stands for “Mutual Exclusion™. In reality, a mutex is a specialized version
of semaphore. Like a semaphore, a mutex is a contamer for tokens. The
difference 18 that a mutex can only contain one token which cannot be created or
destroyed. The principle use of a mutex is to control access to a chip resource
such as a peripheral. For this reason a mutex token 1s binary and bounded. Apart
from this it really works in the same way as a semaphore. First of all we must
declare the mutex container and initialize the mutex:

CMSIS-RTOS Tutorial

osMutexId uart mutex;

osMutexDef (uart mutex),

Once declared the mutex must be created in a thread.
uart_mutex = osMutexCreate(osMutex(uart_mutex));

Then any thread needing to access the peripheral must first acquire the mutex
token:

osMutexWait{osMutexId mutex_iduint32 t millisec;

Finally, when we are finished with the peripheral the mutex must be released:

osMutexRelease(osMutexId mutex_id);

Mutex use is much more rigid than semaphore use, but is a much safer
mechanism when controlling absolute access to underlying chip registers.

Exercise Mutex

In this exercise our program writes streams of characters to the microcontroller
UART from ditferent threads. We will declare and use a mutex to guarantee that
cach thread has exclusive access to the UART until it has finished writing its
block of characters.

In the Pack Installer select ""Ex 15 Mutex'' and copy it to your tutorial
directory.

This project declares two threads which both write blocks of characters to the
UART. Initially, the mutex is commented out.

void vart Threadl (void const *argument) {
wnt32 ti;

for ;) {
fosMutexWait(uart mutex, osWaitForever);
for(i=0,i<104++) SendChar('1";

SendChar("n");

84

CMSIS-RTOS Tutorial

SendChar("r",
HoshutexReleaseart mutex,

i

In each thread the code prints out the thread number. At the end of each block of
characters it then prints the carriage return and new line characters.

Build the code and start the debugger.

Open the UART1 console window with View'\Serial Windows'\UART #1

Serial Windows b 3 uART=L
Analysis Windows L4 -:; UART #2
Trace v uarT#3
System Viewer Pi _'jj Debug [printf) Viewer

Start the code running and observe the output in the console window.

UART #1 X

>

N

ha
P

3 R
S s N

e R 6)
|_
I
I
I
I
|_'l
|'|

A,
-

Here we can see that the output data stream is corrupted by each thread writing to
the UART without anvy accessing control.

Exit the debugger.
Uncomment the mutex calls in each thread.
Build the code and start the debugger.

Observe the output of each task in the console window.

CMSIS-RTOS Tutorial

UART #1 =

Mow the tnutex guarantees each task exclusive access to the UART whale it
wiites each block of characters.

Mutex Caveats

Clearly you must take care to return the mutex token when you are find shed wath
the chip resource, or you wall have effectively prevented any other thread from
accessing it You must also be extremely careful shout usng the
osThread Terminate() call on functions which control a rutex token Kell RTX
1z designed to be a smal footprint ETOS so thatit canrin on even the very small
Cortex-M mi crocontrollers. Consequently thereis no thread deletion safety. Thus
means that 1f you delete a thread which 15 controlling a mutex token, you wall
destroy the mutes token and prevent any futther access to the guarded peripheral.

Data Exchange

S0 far all of the interthread comimunication tnethods have only been used to
trigger execution of threads; they do not support the exchange of program data
between threads Clearly, 1n a real program we wall need to move data between
threads. This could be done by reading and wniting to globally declared variables.
In anything but a very simple program, trying to guarantee data integnty would
he extremely difficult and prone to unforeseen errors. The exchange of data
hetween threads needs amore formal asynchronous method of communication.

56

CMSIS-RTOS Tutorial

CMSIS-RTOS provides two methods of data transfer between threads. The first
method is a message queue which creates a buffered data ‘pipe’ between two
threads. The message queue is designed to transfer integer values.

Message queue
e Integer or paintervalues e
The second form of data transfer is a mail queue. This is very similar to a
message queue except that it transfers blocks of data rather than a single integer.

Message queue

]) .

pointersto memory blocks

alloc free

Mailslots— formatted memory blocks

Message and mail queues both provide a method for transferring data between
threads. This allows you to view your design as a collection of objects (threads)
interconnected by data flows. The data flow is implemented by message and mail
queues. This provides both a buffered transfer of data and a well defined
communication interface between threads. Starting with a system level design
based on threads connected by mail and message queues allows you to code
different subsystems of your project, especially useful if you are working in a
team. Also as each thread has well defined inputs and outputs it is easy to isolate
for testing and code reuse.

CMSIS-RTOS Tutorial

H The system |level view of an RTOS
based project consists of thread

objects connected by data flows
in the form of message and mail

u queues.
2

Message Queue

To setup a message queue we first need to allocate the memory resources,
osMessageQId Q LED,
osMessageQDef (Q LED, 16 Message Slotsunsigned int);

This defines a message queue with sixteen storage elements. In this particular
queue cach clement is defined as an unsigned int. Whilst we can post data
directly into the message queue, it is also possible to post a pointer to a data
abject.

osEvent result;

We also need to define an osEvent variable which will be used to retrieve the
queue data. The osEvent variable 1s a union that allows you to retrieve data from
the message queue in a number of formats.

umnon{
wnt32 tv
void *p
int32 tsignals

tvalue

58

CMSIS-RTOS Tutorial

The osEvent union allows you to read the data posted to the message queue as an
unsigned int or a void pointer. Once the memory resources are created we can
declare the message queue in a thread.

Q_LED = osMessage(Create(osMessageQ(() LED) NULL),

Once the message queue has been created we can put data into the queue from
one thread.

osMessagePut(QQ LED,0x0,0sWaitForever),
and then read if from the queue m another.

result= osMessageGet((Q LED,osWaitForever),

LED data= result.value.v,

Exercise message queue

In this exercise we will look at defining a message queue between two threads
and then use 1t to send process data.

In the Pack Installer select “Ex 16 Message Queue” and copy it to your
tutorial directory.

Open Main.c and view the message queue initialization code.
osMessage(QQld Q LED;

osMessage(QQDef () LED.0x16,unsigned char);

osEvent result;

int main {(void) {

LED_Init (};

Q_LED = osMessage(Create(osMessage(Q(() LED) NULL);

We define and create the message queue in the main thread along with the event
structure.

osMessagePut(Q LED,0x1,0sWaitForever),

osDelay(100);

CMSIS-RTOS Tutorial

Then in one of the threads we can post data and receive it in the second.
result = oshvEssageGet(() LED osWaitForewer),
LED Onfresult walue w);

EBuild the project and start the debugee.

Seta breakpointin led threadl.

34 Hvoid led Threadl (woid const *argument) {

a5 for (nc) 4

36 | result = osMessageGet (Q LED, osWaitForewver);
@37 | LED Omn(result.value.v):

Mow run the code and obzerve the data as it arrives.

Memory pool

While it 15 possible to post simple data values into the message queue it 1z also
possihle to post a pointer to a more complex object. CMBIS-RTOS supports the
dynatnic allocation of memory in the form of a memory pool. Here we can
declare a structure which combines a number of data elements.

typedef stact {
uint? tLEDO;
wint% t1EDI:
uint?_t LEDZ;
wint? t LELG;
Fmemory block t;
Then we can create a pool ofthese objects as blocks of memory.
osPoollef{led pool ter blocks memory hlock th;
osFoolldf led pooly;
Then we can create the memory pool by declanng it in a thread.

led ool = osPoolCreate (osPool{led pooli);

60

CMSIS-RTOS Tutorial

Now we can allocate a memory pool within a thread.
memory block t *led data;

led data = (memory block t) osPoolAlloc(led pool);

and then populate it with data;

led data->LEDO = 0;

led data->LEDI1 =1,

led data->LED2=2;

led data->LED3=3;

It 1s then possible to place the pointer to the memory block in a message queue.
osMessagePut{Q LED,fuint32 t)led data,osWaitForever);

so the data can be accessed by another task.

osEvent event; memory block t* received,

event = osMessageGet((Q_LED,osWatiForever);

*received = (memory_block ®)event.value.p;

led on(received->LEDO),

Once the data in the memory block has been used the block must be released
back to the memory pool for reuse.

osPoolFree(led pool.received),

Exercise Memorypool

This exercise demonstrates the configuration of a memorypool and message
queue to transfer complex data between threads.

In the Pack Installer select “Ex 17 MemoryPool” and copy it to your tutorial
directory.

This exercise creates a memory pool and a message queue. A producer thread
acquires a buffer from the memory pool and fills it with data. A pointer to the

CMSIS-RTOS Tutorial

memory pool buffer is then placed in the message queue. A second thread reads
the pointer from the message queue and then accesses the data stored in the
memory pool buffer before frecing the buffer back to the memory pool. This
allows large amounts of data to be moved from one thread to another in a safe
synchronized way. This is called a “zero copy’ memory queuc as only the pointer
is moved through the message queue, the actual data does not move memory
locations.

At the beginning of main.c the memory pool and message queue are defined.
typedef struct {

uint t canData[8];

} message t;

osPool Def{mpool, 16, message_t),

osPoolld mpool;

osMessageQDef(queue, 16, message t);

osMessageQld queue;

In the producer thread acquire a message buffer, fill it with data and post a
testData++;

message = (message_t*)osPool Alloc{mpool);
for(index =0:index<8;index++){
message->canData[index] = testDatat+index;}

osMessagePut(queue, (nint32_fimessage, osWaitForever),

Then in the consumer threcad we can read the message queuc using the
event.value.p pointer object and then access the memory pool buffer. Once we
have used the data in the buffer it can be released back to the memory pool.

for(index=0;index=8 index++){
message t *message = (message t*evt.value.p;
LED On{(uint32 t)message->canData[index]);}

osPoalFree(mpool, message);

62

CMSIS-RTOS Tutorial

Build the code and start the debugger.

Place breakpoints on the osMessagePut and osmessageGet functions.

) 25 osHezsagePut (gqueue, (uint3? t)message, osWaitForever);
28 osDelay (1000} ;
o i
3 38 o if (evt.3ztatus == pgaEventMessage) §
39 for(index=0;index<Z;index++)
40 [=

Run the code and observe the data being transferr ed between the threads.

Mail Queue

While memory pools can be used as data buffers within a thread, CMSIS-RTOS
also implements a mail queue which is a combination of memory pool and
message queue. The Mail queue uses a memory pool to ereate formatted memory
blocks and passes pointers to these blocks in a message queue. This all ows the
data to stay in an allocated memory block while we only move a pointer between
the different threads. A simple mail queue APT makes this easy to setup and use.
First we need to declare a structure for the mail slot simmlar to the one we used
for the memory pool.

typedef struct {
uint? t LEDO,
uintd_t LED;
untd t LEDE;
untd t LED3;
t mail format;

This message structure is the format of the memory block that is allocated
in the mail queue. Now we can create the mail queue and detine the
number of memory block “slots® in the mail queue.

CMSIS-RTOS Tutorial

osMailQDefimail box, sixteen mail slots, mail format);
osMailQId mail box;

Once the memory requirements have been allocated we can create the mail queue
in a thread.

mail box = osMailCreate{osMailQ(mail box), NULL};

Once the mail queue has been instantiated we can post a message. This is
different from the message queue in that we must first allocate a mail slot and
populate it with data.

mail_format *LEDtx;
LEDtx = (mail_format®osMailAlloc(mail box, esWaitForever),

First declare a pointer in the mail slot format and then allocate this to a mail slot.
This locks the mail slot and prevents it being allocated to any other thread. If all
of the mail slots are in use the thread will block and wait for a mail slot to
become free. You can define a timeout m milliseconds which will allow the task
to continue if a mail slot has not become free.

Once a mail slot has been allocated it can be populated with data and then posted
to the mail queue.

LEDtx->LEDO0 = led0[index];
LEDtx->LED] =ledl[index];
LEDtx->LED2 = led2[index];
LEDtx->LED3 = led3[index];

osMailPut(mail box, LEDtx);

The receiving thread must declare a pointer in the mail slot format and an
osEvent structure.

osEvent evt;
mail format *LEDrx;
Then in the thread loop we can wait for a mail message to arrive.

evt = osMailGet(mail box, osWaitForever);

64

CMSIS-RTOS Tutorial

We can then check the event structure to see if it is indeed a mail message and
extract the data.

if (evt.status =— osEventMail) {

LEDrx = {mail_format*)evt.value.p;

Once the data in the mail message has been used the mail slot must be
released so it can be reused.

osMailFree(mail box, LEDx);

Exercise Mailbox

This exercise demonstrates configuration a mailbex and using it to post messages
between tasks.

In the Pack Installer select “Ex 17 Mailbox” and copy it to your tutorial
directory.

The project creates a 16 slot mailbox to send LED data between threads.

typedef struct {
wint8 t LEDO;
wnt8 tLEDI;
wnt8 tLED2;
wnt8 t LED3;
} mail format;

osMailQDef(mail box, 16, mail format);
osMailQld mail box;
int main (veid) {
LED Imit(};
mail box = esMail Create{ osMail Q{mail box), NULL);

A producer task then allocates a mail slot fills it with data and posts it to the mail
queue.

LEDtx = (mail format*josMail Alloc{mail box, osWaitForever),
LEDt=->LEDO = led0[index];

LEDtx->LEDI1 =ledl[index];

CMSIS-RTOS Tutorial

LEDtx-=LEDZ =led2[irdex];
LEDix-=LEDS = led3[index];
oslvhilPutrnail box, TEDE;

The receiving task waits for a mal message to arnive then reads the data Once
the data has been used the mal slot iz released.

vt = oslvlal G rail box csWaitForeser);

fievt statns == osEventlvlail){

LEDmx = (mail forrmat*est walue

LED Cut{LEDm-=L EDOLEDr:-=1 ED [LEDr-=L ED2| LED-=L EDE)==8);
oslvhilFree(rnail bhox, LEDrx);

}

Build the code and start the debugger

Set a brealspoint in the consumer and producer threads and run the code.

| P P P - s g e mam e g

& 38 ozMailPut (mail box, LEDTx);
3g | ashelay (100)
52 E¥t = o3MailGet (mail box, osWaitForever):
B3 |“'-| if (evt.status =— osEventMail) {
54 | LEDrz = (mail format*)}evt.value.p:

Ohserve the mailbox messages arriving at the consumer thread.

Configuration

So far we have looked at the CMEIS-ETOS APl This includes thread
management functions, time management and interthread communication. Now
that we have a clear idea of exactly what the ETOS kernel 15 capable of we can
take a more detatled look at the configuration file. There 15 one configuration file
for al ofthe Cortex-M based mi crocontrollers.

66

CMSIS-RTOS Tutorial

= Thread Configuration
Mumber of concurrent running user threads]
Default Thread stack size [bytes] 200
Main Thread stack size [bytes] 200
Mumber of threads with user-provided stack ... 0
Total stack size [bytes] for threads with user-... 0

Stack overflow checking [#
Stack usage watermark [+
Processor mode for thread execution Privileged mode

= RTX Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Ti... [¥
RTO5 Kernel Timer input clock frequency [Hz] 12000000

RTX Timer tick interval value [us] 1000
= System Configuration
- Round-Robin Thread switching [v
- User Timers [+
ISR FIFC Queue size 16 entries

Like the other configuration files, the RTX Conf CMc file 15 a template file
which presents all the necessary configurations as a set o f menu options.

Thread Definition

In the thread defiition section we define the basic resources which wall be
required by the CMEBIZ-RTOS threads. For each thread we alocate a defined
stack space (in the above example this 15 200 bytes) We also define the
mazimum twtmber of concurrently running threads. Thus, the amount of RAM
required for the above example can easily be computed as 200 = 6 or 1200 bytes.
If sotme of our threads need a larger stack space, then a larger stack can he
allocated when the task 1z created. In addition the total custom stack size must be
allocated 10 the configuration file along wath the total number of threads wath
custormn stack size. Agan, the BAM requirementis easily caloulated.

CMSIS-RTOS Tutorial

Kernel Debug support

During development, CMSIS-RTOS can trap stack overflows. When this option
is enabled, an overflow of a thread stack space will cause the RTOS kernel to call
the os error function which is located in the RTX Conf CM.e file. This function
gets an error code and then sits in an infinite loop. The stack checking option is
intended for use during debugging and should be disabled on the final application
to mmimize the kernel overhead. However, it is possible to modify the os error()
function if enhanced error protection is required in the final release.

#define OS ERROR STACK OVF |
#define O8 ERROR FIFO OVF 2
#define OS_ERROR_MBX OVF 3
extern osThreadld sveThreadGetld (void);
void os_error (uint32 terror_code) {
switch (error_code) {
case OS_ERROR_STACK OVE:
/* Stack overflow detected for the currently running task. */
/* Thread can be identified by calling sveThreadGetld(). */
breal;
case O3 _ERROR FIFO OVF:
/* ISR FIFO Queue buffer overflow detected. */
break;
case O3 ERROR MBX OVF:
/* Mailbox overflow detected. */
break;

}

for (;;);

68

CMSIS-RTOS Tutorial

It is also possible to monitor the maximum stack memory usage during run time.
If you check the “Stack Usage Watermark’ option, a pattern (0xCC) is written
into each stack space. During runtime this watermark is used to calculate the
maximum memory usage. This figure is reported in the threads section of the
‘System and Event Viewer” window.

The final option in the thread definition section allows you to define the number
of user timers. It is a common mistake to leave this set at zero. If you do not set
this value to match the number of virtual timers in use by your application, the
os_timer() API calls will fail to work. The thread definition section also allows us
to select whether the threads are minning in privileged or unprivileged mode.

System Timer Configuration

The default timer for use with CMSIS-RTOS is the Cortex-M SysTick timer
which is present on nearly all Cortex-M processors. The input to the SysTick
timer will generally be the CPU clock. It 1s possible to use a different timer by
unchecking the “Use SysTick® option. If you do this there are two function stubs
in the RTX Conf CM.c file that allow you to initialize the alternative timer and
acknowledge its interrupt.

int os_tick mit (void) {
return (-13; M Eeturn IRQ nmumber of timer (0 2350 */
i
void os tick irqack (void) {
.
i

Whichever timer you use you must next setup its input clock value. Next we
must define our timer tick rate. This is the rate at which timer interrupts are
generated. On each timer tick the RTOS kemel will run the scheduler to
determine if it is necessary to perform a context switch and replace the running

CMSIS-RTOS Tuterial

thread. The timer tick value will depend on your application, but the defauli
starting value is set to Imsec.

Timeslice configuration

The final configuration setting allows yvou to enable round robin scheduling and
define the timeslice period. This is a multiple of the timer tick rate so in the
above example each thread will run for five ticks or Smsec before it will pass
execution to another thread of the same priority that is ready to run, If no thread
of the same priority is ready to run, it will continue execution. The system
configuration options also allow you to enable and configure the virtual timer
thread. If vou are going to use the virtual timers this option must be configured or
the timers will not work. Then lastly if you are going to trigger a thread from an
interrupt routine using event flags then it is possible to define a FIFO queue for
triggered signals. This buffers signal triggers in the event of bursts of intenrupt
activity,

Scheduling Options

CMSIS-RTOS allows you to build an application with three different kernel
scheduling options. These are round robin scheduling, pre-emptive scheduling
and co-operative multi-tasking. A summary of these options are as follows:

Pre-emptive scheduling

If the round robin option is disabled in the RTX Config CM.¢ file, each thread
must be declared with a different priority. When the RTOS is started and the
threads are created, the thread with the highest priority will run,

In a pre-emptive RTOS each thread
has a different priority level and will

Prasiiilior ?f-"':k run until it is pre-empted or has
BRIGRITT — = reached a blocking OS call.
~_\) T3 3 I
4 T2 T2

]

TIME

70

CMSIS-RTOS Tutorial

This thread will run unfil it blocks, i.e. it 1s forced to wait for an event flag,
semaphore or other object. When 1t blocks, the next ready thread with the highest
priornty will be scheduled and will run until it blocks, or a higher priority thread
becomes ready to run. So with pre-emptive scheduling we build a hierarchy of
thread execution, with each thread consurmng variable amounts of run time.

Round-Robin Scheduling

A round-robin based scheduling scheme can be created by enabling the round-
robin option in the RTX Conf CM.c file and declaring each thread with the
same priority.

In a round robin RTOS
threads will run for a fixed

PRIORITY ———— Block period or timeslice or until
they reach a blocking 0S
call.

T T2 T3 T4 T

TIME

In this scheme, each thread will be allotted a fixed amount of run time before
execution is passed to the next ready thread. If a thread blocks before its
timeslice has expired, execution will be passed to the next ready thread.

Round-Robin Pre-emptive Scheduling

As discussed at the beginmng of this tutorial, the default scheduling option for
the Keil RTX 1s round-robin pre-emptive. For most applications this is the most
useful option and you should use this scheduling scheme unless there is a strong
reason to do otherwise.

Co-operative Multitasking

A final scheduling option 1s co-operative multitasking. In this scheme, round-
robin scheduling i1s disabled and each thread has the same priority. This means
that the first thread to run will run forever unless it blocks. Then execution will
pass to the next ready thread.

CMSIS-RTOS Tutorial

PRIORITY

Tasks block or call

0s_isk pass

| ™ I T2

|T3[T4[T1I

In a co-operative RTOS each thread
will run until it reaches a blocking
QO3S call or uses the osThreadYield()
call.

TIME

Threads can block on any of the standard OS objects, but there i1s also an
additional OS call, os task pass, that schedules a thread to the ready state and
passes execution to the next ready thread

RTX Source Code

CMSIS-RTOS Keil RTX 1is included with all versions of the MDEK-ARM

toolchain. The source code can be found in the following directory of the

toolchain.

CAK e\ ARM Pack' ARMCMSI S \<version>\CMSIS\RTOS'RTX

If you want to perform source level debugging of the RTOS code create a text
file containing the following command line where the path is the RTX source

directory.

SET SRC = <path>

Now add this file to the initialization box in the debugger menu.

A Options for Target Tamget 1' (==
Devize | Tomet | Outpus | Lsting | toer €0 | Sav | Likes Debug | Utivies |
7 Use Simuister Sebings | Lee: [UIRKZMECotan Dobugzer v Sebiings
I Limit Saceel to Resl-Tine
¥ Load fpptcaton a Sarup ™ Runts mar ¥ Loac Apohoancn ot Stertup W Aur to man(i
Irtidzation Fla. ritiaizaton Fle:
| eadxscucs i 8 = = IR
T i Evalins St ol Rkt Dsny e Seklitpe -
. Breakpoirs I¥ Todbox W Freakports 1¥ Toolbax
[¥ Watch Windows & Perfomence Anaiyzzr W Viztch Wincows
W Mamory Daclay ¥ Syatem Viewer W Memory Jiagay ¥ Symtem Viawer
CRUDLL: _ Pasmeter v Dl: Pametor: il
[FARMCWETLL | [saFmCmaDLL |
Dacg 0Ll Pammee Calig DLL arametss:
ID.ERK-‘STM [T [ﬁsmnr:o{ﬁé [FAmIsTM DL [43TMz2F 103RE
oK Conce | Deaas | Heb

72

CMSIS-RTOS Tutorial

Now when you start the debug session the RTX source will be loaded.

RTX License

CMSIS-RTOS Keil RTX is provided under a three clause BSD license and may
be used freely without cost for commercial and non commercial projects. RTX

will also compile using the TAR and GCC tools. For more information use the
URL below.

https//www _keil. com/demo/eval/ttx htm

Hardware Debug

Durmg this tutorial we have used the simulator within the pVision debugger. To
debug real hardware vou need to select the hardware interface you are using and
select the radio button to enable hardware debug.

ﬂ Options for Target Target 1' M
Device | Taret | Outout | Listing | User | C/Coe | Asm | Licker Debug | Liities |
" Use Simulator Settings] f* Us=: |ULINK2Z/ME Corex Debugger w| Seiings
[~ Lt Speed to Real-Time JINEZ/ME Cortex Debugges o |
: Mem_ﬂladetu’ta(Debugger
W Load Appication =t Statup W Bun to main() ¥ Load é;l_::nls E,g‘wsﬂ‘m main()
Infisfizetion Fie Iritiakzatic J-LINK £ J-TRACE Cotax E
i JUNK Pro Codex Debugger 3
| o] =] (=t i Deboer IJ b
Restore Debug Session Settinge Renore'g';f_ﬁf*uﬂne‘:u?;;m +
¥ Breakpoints W Toobax I &E“SE‘?‘;P rE]‘!PL-Ig;!' =
I¥ Waich Windows & Perdormance Analyzer P wifcsiedels Detgoer =

¥ Memiory Display W System Viewer ¥ Memery Disnlay W System Viewer

CPUDLL Parameter Diiver DLL: Parameter
|SARMCM3 DLL |]SARMCMB.D:_]
Diglog DLL: Pamameter: Dialog DLL: Paramater:
|DARMSTM DLL |p5Trz32i1c:cRB jTAF\‘l-'ISTM DLL 11:-STM32F1[13"“B
oK] Cancel] Defauts I Hep |

4

If your hardware debugger supports the CoreSight Instrumentation Trace
Macrocell (ITM), you will be able to get the same debug information in the
‘System and Thread Viewer’ and ‘Event Viewer’. However, to make these
windows active you must enable and configure the ITM. In the debug dialog
press the settings button next to the hardware debug interface.

CMSIS-RTOS Tutorial

- ==
Cortex-M Target Drver Setup - - @

Detug Trace | Fizsh Downboad |

Core Clook; | 180000000 MHz ¥ Trace Enable
i Trace Part ~ Timaatampa - ~Trace Eventz :
| [Sorma Wim Oout UNETARRT] | | W Bk Prescaler[1 = | | T CPL Cycloo par nsinuctin
SWWO Clock Preszakr: [10 FC Sarpirg LB g eisiiad
I Asidon [I SLEEP: Slaep Cyclas
v YT
Lt : Pragealer: [1024715 - I LSU: Loed Store Lk Gycles
S B! NN M T Penndi= Perod: | <Disabled> ™ FOLD: Folded retructiore
| Eror <5W Potrot selected> | | [T on Data R/W Sampls | ¢ EMCTRC: Exception Tracing
1 T Stimuiue Porte C e
| el Poit 243 Pot 1615 Port o7 Fert 0
Enabls: (303000 (7 T T O I N O O O
| Paviese: [Lo0n00008 Pot3124 ¥ Foi23.06 T Poit 15.8 T Pt 7.0 [
=] o
e]

In this menu you must set the Core clock to the CPU frequency of your
microcontroller.

Next tick the trace enable box.
Finally enable port 31 of the ITM stimulus ports

This will now receive the additional debug information sent by the RTX kernel.

74

CMSIS-RTOS Tutorial

Further Reading

THE DESIGNER'S GUIDE

TO THE CORTEX-M
PROCESSOR FAMILY

A Tutorial Approach

This tutorial is an excerpt from the Designers Guide to the Cortex-M Processor
family by Trevor Martin.

Table of contents
Introduction to the Cortex-M Processor Family
Developing Software for the Cortex-M Processors
Cortex-M Architecture
Cortex Microcontroller Software Interface Standard
Advanced Architecture Features
Developing with CMSIS-RTOS
Practical DSP for the Cortex-M4
Debugging with CoreSight

For More details please see the Elsevier Store

Print book ISBN 978-0080982960

http:/store.elsevier.com/product. jsp?isbn=9780080982960&pagename=scarch

E Book ISBN 978-0080982991

http:/store.elsevier.com/product. jsp?isbn=9780080982991 &pagename=search

CMSIS-RTOS Tutorial

Reference Material

Little Book Of Semaphores Allen B downey

http://www.greenteapress.com/semaphores/

Training Courses

In Depth Training courses for the Cortex-M processors are available from Hitex
in Germany and the UK.

Training courses in Germany

http://www.hitex.com/index.php?id=training&1.=2

Training courses in the UK

http://www hitex.co.uk/index.php?id=3431

