LAB MANUAL

DIGITAL SIGNAL PROCESSING

PC-RE/P/403



CONTENT

SL NO. NAME OF THE EXPERIMENT EXPERIMENT
NUMBER
1 Simulation of sampled Sinusoidal signal, various | PC-RE/P/403/01
sequences and different arithmetic operations.
2 Simulation of convolution of two sequences PC-RE/P/403/02
using graphical method and using commands,
verification of the properties of convolution.
3 Simulation of z transform of various sequences - | PC-RE/P/403/03
verification of the properties of z transform.
& Simulation of Twiddle factor-verification PC-RE/P/403/04
of the properties.
5 Simulation of DFT and IDFT using matrix PC-RE/P/403/05
multiplication and also using commands
6 Simulation of circular convolution of two PC-RE/P/403/06
sequences using graphical methods and using
commands, differentiation between linear and
circular convolutions.
3z Verifications of the different algorithms associated PC-RE/P{403/07
with filtering of long data sequences and
Overlap —add and Overlap-save methods.
8 Butterworth filter design with different set of | PC-RE/P/403/08
parameters.
9 FIR filter design using rectangular, Hamming | PC-RE/P/403/09
and Blackman windows.
10 Writing & execution of small programs related | PC-RE/P/403/10

to arithmetic operations and convolution using




Assembly Language of TMS320C5416/6713
Processor, study of MAC instruction.

11 Writing small programs in VHDL/Verilog and PC-RE/P/403/11
downloading
onto Xilinx FPGA.

12 Mapping of some DSP algorithms onto FPGA. PC-RE/P/403/12




WORK INSTRUCTION

1.0 JOB/EXPERIMENT NO.: PC-RE/P/403/01

2.0 NAME OF JOB/EXPERIMENT: Simulation of sampled Sinusoidal gignal, various
sequences and different arithmetic operations.

3.0 OBJECTIVE: Simulation of sampled Sinusoidal signal, various sequences and
different arithmetic operations.

4.0 PRINCIPLE:
Representation of a sequence is given by,

o 11 1 A TA——— 0 O 0T 52 o) R—— + [infinite duration sequence]
4
x(n)= {0,0.1,4.1,0,0,1,3,2} [finite duration sequence]
4

In the sequence time origin (n=0) is indicated by the symbol ¢ * 4

Time shifting:

The shift operation takes in the input sequence and it shifts the values by an integer increment
of the independent variable. The shifting may delay or advance the sequence in time.
Mathematically this can be represented as,

y(n)=x(n-k)

Where y(n) is the output sequence . x(n) is input sequence and k is integer which gives the
shift in x(n).

Time reversal:

The time reversal of the sequence x(n) can be obtained by folding the sequence about n=0.1t
is denoted as x(-n).

y(m)=x(-n)
Scalar multiplication:

Here we need a scalar multiplier ‘a’. The sequence x(n) is multiplied by the scalar multiplier.
y(n)=ax(n)

x1(n)={1.2.3.4}
x2(n)={4.3.2.1}

y(n)=xi(n)+x2(n)={3,5,5,5}



5.0 APPARATUS REQUIRED:

SL.NO. | ITEM MAKERS RANGE
NAME

01 Computer

02 Matlab

6.0 PROCEDURE:
Matlab program:
%Generation of sampled sinusoidal signal

m=0:1:80;

x=cos(m*0.1%pi),

z=sin{m*0.1%*p1);

Y=X1Z;

figure(5);

subplot(3,1,1),stem(m,x),

title("Generation of sampled cosing signal');
xlabel('n"),ylabel('amplitude');
subplot(3,1,2),stem(m,z),

title("Generation of sampled sine signal');
xlabel('n"),ylabel('amplitude');
subplot(3,1,3),stem(m,y);

title("Generation of sampled sinusoidal signal by adding sine & cosine signals');
xlabel('n"),ylabel('amplitude');

% Various sequences and different arithmetic operations

%Generation of sequence
n=3:1:10;
a=[0 001 232470 @0 0 00];

figure(2);
subplot(3,1,1),stem(n,a).title(" Sequence’),axis([-4 10 0 4]);
xlabel('n"),ylabel('amplitude');

%Time shifting

subplot(3,1,2),stem(n+2,a).axis([-4 10 0 4]);

title("Sequence after twice right shift"),xlabel('n"),ylabel('amplitude');
subplot(3,1,3),stem(n-2.a),axis([-4 10 0 4]);

title("Sequence after twice left shift"),xlabel('n"),vlabel('amplitude');

%Time reversal

figure(3);

subplot(2,1,1),stem(n,a),axis([-10 10 0 4]);
title("Sequence"),xlabel('n"),ylabel('amplitude');
subplot(2,1,2),stem(-n,a),axis([-10 10 0 4]);
title("Time reversal’),xlabel('n"),ylabel('amplitude');



%Scalar multiplication

figure(4),

subplot(2,1,1),stem(n,a),axis([-4 10 0 7]);
title("Sequence'),xlabel('n"),ylabel('amplitude');
subplot(2,1,2),stem(n,a*2),axis([-4 10 0 7]);

title("Scalar multiplication (scalar multiplier =2)"),xlabel('n"),ylabel('amplitude'),

%Multiplication and addition of two sequences
n=0:1:9;

b=[-12-1100121 1];%one sequence
¢c=[1232001 2-10]:%another sequence
d=b.*c %emultiplication

e=b+c %addition

7.0 SAFETY:
NOT APPLICABLE

8.0 DISPOSAL:
NOT APPLICABLE

9.0 REPORT WRITING:
9.1 Attach the rough note with your final report.
9.2 The 1% Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write your final report as per the Work Instruction

ANNEXURE-1

NAME:

ROLL NO.: DEPARTMENT:

DATE OF SUBMISSION: DATE OF EXPERIMENT:

CO-WORKER

NAME ROLL NO.

1.







WORK INSTRUCTION

1.0 JOB/EXPERIMENT NO.: PC-RE/P/403/02

2.0 NAME OF JOB/EXPERIMENT:

Simulation of convolution of two sequences using graphical method and
using commands, verification of the properties of convolution.

3.0 OBJECTIVE:

To simulate the convolution of two sequences using graphical method and

using commands-verify of the properties of convolution.

4.0 PRINCIPLE:

The convolution of sequences x(n) and h(n) 1s given by,

+a

y(m) = 3 x(k)h(n—k)

k=—o

Properties of convolution:

Commutative law:
x(n)* h(n) = h(n) * x(n)

Associative law:

[x(r2) % By ()% o, (32) = () % [Ty (1) % Py ()]

Distributive law:

x(r)* [fy(e) + I (m)] = x(m)* Iy (1) + x(m) Iy (1)

5.0 APPARATUS REQUIRED:

SL.NO. | ITEM MAKERS RANGE
NAME

01 Computer

02 Matlab




6.0 PROCEDURE:

Matlab program:

%Convolution of two sequences

x=[10-11 2 0]%lst sequence

v=[1 3 2 1]%?2nd sequence

z=conv(x,y)%linear convolution of x & y

d=deconv(z,y)

figure(1);

n=0:1:5;

subplot(2,2,1).stem(n,x),axis([0 5 O 4]),

title(' 1% Sequence,x(n)'), xlabel('n'), ylabel('amplitude');

n=0:1:3;

subplot(2,2,2).stem(n,y),axis([0 5 0 4]),

title('2nd Sequence, y(n)'), xlabel('n'), ylabel('amplitude');
n=0:1:8;

subplot(2,2.3),stem(n,z),axis([0 11 -1 7]);

title(' linear convolution of 1st & 2nd Sequence.c(n)'),xlabel('n'),ylabel('amplitude'),
n=0:1:5;

subplot(2,2,4),stem(n,d),axis([0.5 0 4]);

title('Deconvolution of y(n) & c(n)'),xlabel('n"),ylabel('amplitude"),

%verification of the properties of convolution

%commutative law: [x(n)*y(n)=y(n)*x(n)]
X

¥

a=conv(x,y)%L.H.S.

b=conv(y,x)%R.H.S.

%associative law: [x(n)* y(n)]*h(n)=x(n)*[v(n)*h(n)]
X
y

h=[1111]
C=CONV(X,¥);
e=conv(y,h);
F=conv(e,h)%I..H.S.
G=conv(x.¢)%R.I1.S.

%odistributive law: x(n)* [y(n)+h(n)]=x(n)* y(n)+x(n)*h(n)
X

y

h

k=y+h;

L=conv(x,k)%I.H.S.

o=conv(x,v);

p=conv(x,h);

R=0+p%R.H.S.



9.0 SAFETY:
NOT APPLICABLE

10.0 DISPOSAL:
NOT APPLICABLE

9.0 REPORT WRITING:
9.1 Attach the rough note with your final report.
9.2 The 1% Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write your final report as per the Work Instruction

ANNEXURE-I

NAME:

ROLL NO.: DEPARTMENT:

DATE OF SUBMISSION: DATE OF EXPERIMENT:

CO-WORKER

NAME ROLL NO.

1:

TILE

OBJECTIVE:

Marks Obtained Signature of the
Sessional in -  charge



WORK INSTRUCTION

3.0 JOB/EXPERIMENT NO.: PC-RE/P/403/03

4.0 NAME OF JOB/EXPERIMENT:
Simulation of z transform of various sequences -verification of the
properties of z transform.

5.0 OBJECTIVE:
To simulate of z transform of various sequences -verify of the properties of
7z transform

4.0 PRINCIPLE:

The z transform of discrete time signal sequences x(n) 1s given by,

Sy ix(n)z’” . Where z is a complex variable.

Properties of convolution:

Shifting property:
Zix(n=m)}=z"X(2)

Linearity property:
Zlax(m)+ bx,(m)] = aX,(2) + bX,(2)

Multiplication property:
Z{a"x(n)} = X (a”'z)

5.0 APPARATUS REQUIRED:

SL.NO. | ITEM MAKERS RANGE
NAME

0l Computer

02 Matlab

6.0  PROCEDURE:

Matlab program:

%program for computing z-transform and verify its properties
a=[00103-1200 0]%a finite sequence

d=size(a);

%ztranstrm of a causal sequence



y1l=ztran(a)

%verification of shifting property[Z{a(n+tm)}=z2"m*X(z)]
Symszpq;

m=2;%right shift 2

n=1:1:d(2)-m;

b(n)=a(n+m),

y2=ztran(b)%z transform of a(n+m)

v3=y1.%7°2

%verification of linearity property[Z{a*x1(n)+b*x2(n)}=a*X1(z)+b*X2(n)]
¢c=[00112120 1 0];%taking another sequence

yd=ztran(c);

e=(p*a)yH(q*c),

y5=ztran(e)%computing LLHS

y6=p*y1+q*v4%coputing RHS

%verification of mutiplication property[Z{a"n*x(n)}=X(z/a)]
b=2;%scaling factor

for n=1:1:d(2),

fin)=a(n). *(b"(n-1);

y7=ztran(f);%computing LHS

end

y7

y8=rep(a,b)%%computing RHS

function ans=ztran(a)
m=size(a);
syms z;
ans=0;
for n=1:1:m(2);
b(n)=a(n)*z"(-n+1);
ans=ans+b(n);
end
end

funetion ans=rep(a,x)
m=size(a);
Syms z;
ans=0;
for n=1:1:m(2);
b(n)=a(n)*(z/x)"(-n+1);
ans=ans+b(n);
end
end

7.0 SAFETY:
7.1 All the programs should be checked before run.
7.2 Shut down the computer after experiment.



8.0 DISPOSAL:
NOT APPLICABLE

9.0 REPORT WRITING:
9.1 Attach the rough note with your final report.
9.2 The 1% Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write your final report as per the Work Instruction

ANNEXURE-I

NAME:

ROLL NO:.: DEPARTMENT:

DATE OF SUBMISSION: DATE OF EXPERIMENT:

CO-WORKER

NAME ROLL NO.

1:

TILE

OBJECTIVE:

Marks Obtained Signature of the
Sessional in - charge



WORK INSTRUCTION

1.0 JOB/EXPERIMENT NO.: PC-RE/P/403//04

2.0 NAME OF JOB/EXPERIMENT:
Simulation of Twiddle factor-verification of the properties.

3.0 OBJECTIVE:
To simulate of Twiddle factor and to verify of the properties.
4.0 PRINCIPLE:

The N point discrete Fourier transform ol a sequence x (n) is given
below,
N-1

X&)=Y x(n) ¢ kN 0<k<N-1
n=0
Now exp(-12n/N) in the above equation is called Twiddle factor(W).

W=exp(-12n/N)

Properties of Twiddle Factor:
Symmetry property:
Symmetry property of Twiddle factor 1s given below,
W N2 = W ®
Periodicity property:
Periodicity property of Twiddle factor is given below,

W &N = ik

3.0 APPARATUS REQUIRED:

SL.NO. | ITEM MAKERS RANGE
NAME

01 Computer

02 Matlab




6.0 PROCEDURE:

Matlab program:

%Simulation of twiddle factor and verification its property
N=g;
W=exp(-1*1*2*pi1/N) %generate twiddle factor

% Verification of symmetry property[ W (k+N/2)=-W"k]
k=2;

a=W"(k+N/2)%computing LHS

b=W"k%coputing RHS

% Verification of periodicity property[ W (k+N)=W~"k]
c=W"(k+N)%computing .HS
d=W"k%computing RHS

7.0 SAFETY:
7.1  All the programs should be checked before run.
7.2 Shut down the computer after experiment

8.0DISPOSAL:
NOT APPLICABLE

9.0 REPORT WRITING:
9.1 Attach the rough note with your final report.
9.2 The 1% Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write your final report as per the Work Instruction

ANNEXURE-I
NAME:
ROLLNO.; DEPARTMENT:
DATE OF SUBMISSION: DATE OF EXPERIMENT:
CO-WORKER
NAME ROLI, NO.
4
2,
5
4,







WORK INSTRUCTION

1.0 JOB/EXPERIMENT NO.: PC-RE/P/403//05

2.0 NAME OF JOB/EXPERIMENT:
Simulation of DFT and IDFT using matrix multiplication and also using commands

3.0  OBJECTIVE:
To Simulate the DFT and IDFT of a given sequence.

4.0  PRINCIPLE:
The N point DFT of a given discrete sequence x(n) is given by,

X(k) =" x(mye

The N point IDFT of a given sequence X(k) is given by ,

- 1 N-1 2 | N
s e EZR:DX(’IC)QJ

5.0 APPARATUS REQUIRED:
SL.NO. | ITEM MAKERS RANGE
NAME
01 Computer
02 Matlab

6.0 PROCEDURE:
Matlab program:
%Simulation of N point DFT & IDFT

%simulation of N point DFT

x1=[1 1 1];%input sequence

N=60;

D=dft(x1,N);%calculating N point DFT

n=1:1;N;

A=abs(D);%amplitude of X(k)

B=angle(D);%phase of X(k)

k=1:1:N;

subplot(2,2,1),stem(k-1,A),title( Amplitude plot of X(k) of x(n) when
N=60",xlabel('k").ylabel("amplitude');

subplot(2,2.3 ),stem(k-1,B).title('Phase plot of X(k) of x(n)when
N=60"),xlabel('k"),ylabel("phase');

%comparing DFT for different value of N
N=10;



D=dft(x1,N);

n=1:1:N;

A=abs(D);

B=angle(D);

figure(1)

k=1:1:N;

subplot(2,2,2),stem(k-1,A);

title(" Amplitude plot of X(k) of x(n)when N=10"),xlabel('k"),ylabel("phase');
subplot(2,2.4),stem(k-1,B);

title("Phase plot of X(k) of x(n)when N=10"),xlabel('k"),ylabel("phase");

%simulation of N point IDFT
X=[1010]

N=4,

[=1dft (X, N)

function s=dft(x1,N)
d=size(x1);
L~d(2);
x=[x1 zeros(1,N-L)];
W=exp((-1)*1*2*p1/N),

for n=1:1:N;

sum=0;

for m=1:1:N;

y(m)=x(m)*W"((m-1)*(n-1));
sum=sum-+y(m);
end

s{(n)=sunt;

end

end

function s=idft(x1.N)
d=size(x1);
1-d(2);
x=[x1 zeros(1,N-L)];
W=exp(i*2*pi/N);

for n=1:1:N;

sum=0;

form=1:1:N;

Y(m)=x(m)*W((m-1)*(n-1));
sum=sum-+y(m);

end

s(n)=sum/N;
end

end

11.0  SAFETY:
NOT APPLICABLE



12.0 DISPOSAL:
NOT APPLICABLE

9.0 REPORT WRITING:
9.1 Attach the rough note with your final report.
9.2 The 1% Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write your final report as per the Work Instruction

ANNEXURE-I

NAME:

ROLL NO:.: DEPARTMENT:

DATE OF SUBMISSION: DATE QF EXPERIMENT:

CO-WORKER

NAME ROLL NO.

1.

THLE

OBJECTIVE:

Marks Obtained Signature of the
Sessional in - charge



WORK INSTRUCTION

4.0  JOB/EXPERIMENT NO.: EC PC-RE/P/403/692/06

5.0 NAME OF JOB/EXPERIMENT:
Simulation of circular convolution of two sequences using graphical
methods and using commands, differentiation between linear and circular
convolutions.

3.0 OBJECTIVL:
To simulate circular convolution of two sequences using graphical
methods and using commands, differentiation between linear and circular
convolutions.

4.0 PRINCIPLE:

The circular convolution of two discrete sequences X 1(n) and x 2(n) is given by,

N-1
X,{m) = le(n)xz((m —n)),am=0,12......... N-1
n=0
Graphical method:
a) Graph N samples of x 1(n) as equally spaced points around an circle in anticlockwise
direction.

b) Start at same point as X 1(n). graph N samples of x 2(n) as equally spaced points
around an inner circle in clockwise direction.
¢) Multiply corresponding samples on the two circles and sum the products to produce
the output.
d) Rotate the inner circle by one sample at a time in counter clockwise and go to step 3
to obtain the next value of output.
Matrix method:
If the Circular convolution of x 1(n) & x 1(n) is x 3(n),then x 3(n) can be found from yhe
following equation,

%(0) tts@=D x,(N=2) . . O] %O | [ %0 ]

(1) %0 HW-D . . ox@f xd x; (1)

1 (PA x,(1) 26, 100) o MLR i) _ x50 2)
N -1 ,(V-2) 5(V-3) . . %O |xWV-1]| [xW-1)]
S.0 APPARATUS REQUIRED:

ITEM MAKERS RANGE
SL.N NAME
O.
01 Computer
02 Matlab




6.0 PROCEDURE:

Matlab program:

%Simulation of circular convolution and differentiation between linear and
circular convolution

%Simulation of circular convolution between x(n) and h(n)

x=[11111];
h=[111];
n=>5;

nl=length(x);

n2=length(h);

x=[x zeros(1,n-nl)];

h=[h zeros(1,n-n2)|;

C=crconv(x,h,n)

L=conv(x,h)

m=1:1:n;

subplot(2,2,1),stem(m-1,x),axis([0 n O 4]),title("x(n)"),xlabel('n"),ylabel
(‘amplitude');

subplot(2,2,2),stem(m-1,h)axis(JO0  n 0  4])title("h(n)"),xlabel('n"),ylabel
(‘amplitude') ;

subplot(2,2.3),stem(m-1,C).axis([O n O 4]),title('Circular convolution of x(n) &
h(n)").xlabel('n"),ylabel(*famplitude");

m=1:1:n1+n2+1;

subplot(2,2,4).stem(m-1,1.),axis([0 8 O 4]),title('Linear convolution of x(n) &
h(n)"),xlabel('n").ylabel('amplitude');

function Y=crconv(x.,h,n)
g=length(h);%length of h(n)
Yoformation of 1st matrix
fori=1:1n;
p=0:
for j=1:1:n;
if j<=1;
fork=1:1:i;
X(,k)=x(1-k+1);
end
else
X(i.j)=x(n-p);
p=ptl;



end
end
end
%formation of 2nd matrix
H=[h zeros(1,n-q)];
i i
%get final result
Y=y.",
7.0 SAFETY:
NOT APPLICABLE

8.0 DISPOSAL:
NOT APPLICABLE

9.0 REPORT WRITING:
9.1 Attach the rough note with your final report.
9.2 The 1* Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write your final report as per the Work Instruction

ANNEXURE-I

NAME:

ROLL NO:.: DEPARTMENT:

DATE OF SUBMISSION: DATE OF EXPERIMENT:

CO-WORKER

NAME ROLL NO.

1.

TIHEE

OBJECTIVE:







WORK INSTRUCTION

6.0 JOB/EXPERIMENT NO.: PC-RE/P/403/07

2.0 NAME OF JOB/EXPERIMENT: Verifications of the different algorithms associated
with filtering of long data sequences and Overlap —add and Overlap-save methods.

3.0 OBJECTIVE: To verify the different algorithms associated with filtering of long data
sequences and Overlap —add and Overlap-save methods.

4.0 PRINCIPLE:

In real-time signal monitoring applications the input signal x(n) is often very long. To find
out response of such a long signal at tine is not possible through linear filtering via the DFT
due to large memory requirements. This problem can be overcome by the following strategy:
a. Segment the input signal into fixed-size blocks prior to processing.
b. Compute DFT-based linear filtering of each block separately via the FFT.
c. Fit the output blocks together in such a way that the overall output is equivalent to
the linear filtering of x(n) directly.
There are two approaches available in real-time linear filtering of long inputs:
I) Overlap-Add Method
II) Overlap-Save Method

The Overlap-Add Method deals with the following signal processing principles:
¢ The linear convolution of a discrete-time signal of length L and a discrete-time
signal of length M produces a discrete-time convolved result of length T.+M-1.
e Addititvity:
(x1(n)+x2(n))* h(n) = x1(n) *h(n)y+x2(n)*h(n)

The Overlap-Save Method deals with the following signal processing principles:
e The N = (I.+M-1)-¢circular convolution of a discrete-time signal of length N and a
discrete-time signal of length M using an N-DFT and N-IDFT.
¢ Time-Domain Aliasing:
x.(n) =¥ 2lx;(n—IN) ;n=012,.... N—1.

5.0 APPARATUS REQUIRED:
SL.NO. | ITEM MAKERS RANGE
NAME
01 Computer
02 Matlab




6.0 PROCEDURE:
Algorithm:

Overlap-Add Method

1. Break the input signal x(n) into non-overlapping blocks xm(n) of length L.

S

. Zero pad h(n)to be of length N=1.+ M -1.

3. Take N-DFT of h(n) to give H(k), kK 0,1.2,...... N-1.

=

For each block m:
4.1 Zero pad xm(n) to be of length N =L +M -1.
4.2 Take N-DFT of x(n) to give Xm(k), k=0,12,...... N-1.
4.3 Multiply: Ym(k) = Xm(k) H(k), k=0,1.2....... N-1L.
4.4 Take N-IDFT of Ym(k) to give ym(n), n=0,1,2,...... N-1.

5. Form y(n) by overlapping the last M -1 samples of ym(n) with the first
M -1 samples of yy+1(n) and adding the result.

Overlap-Save Method

1. Insert M-1 zeros at the beginning of the input sequence x(n).

2. Break the padded input signal into overlapping blocks xm(n) of length
N =L + M- 1 where the overlap length is M-1.

3. Zero pad h(n)to be of length N =1. + M- 1.

4. Take N-DFT of h(n) to give H(k), k=0.1,2,...... N-1.

5. For each block m:
5.1 Take N-DFT of xm(n) to give X(k), k=0,1,2,...... N-1.
5.2 Multiply: Yim(k) =Xm(k) Hk). k=0.1,2......... N -1
5.3 Take N-IDFT of Ym(k) to give ym(n), n=0,1,2......... N -1.
5.4 Discard the first M -1 points of each output block ym(n).

6. Form y(n) by appending the remaining (i.e., last) I samples of each block
Ym(1).

13.0 SAFETY:
NOT APPLICABLE

14.0 DISPOSAL:
NOT APPLICABLE

9.0 REPORT WRITING:



9.1 Attach the rough note with your final report.
9.2 The 1% Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write your final report as per the Work Instruction

ANNEXURE-1

NAME:

ROLL NO.: DEPARTMENT:

DATE OF SUBMISSION: DATE OF EXPERIMENT:

CO-WORKER

NAME ROLL NO.

1.

TITLE

OBIJECTIVE:

Marks Obtained Signature of the
sessional  in  —  charge



WORK INSTRUCTION

7.0 JOB/EXPERIMENT NO.: PC-RE/P/403//08

6.0

NAME OF JOB/EXPERIMENT:
Butterworth filter design with different set of parameters.

5.0 OBJECTIVE:

To design Butterworth filter with different set of parameters.

6.0 PRINCIPLE:

IIR filters are digital filters with infinite impulse response. Unlike FIR filters, they
have the feedback (a recursive part of a filter) and are known as recursive digital
filters therefore. For this reason IIR filters have much better frequency response than
FIR filters of the same order. Unlike FIR filters, their phase characteristic is not linear
which can cause a problem to the systems which need phase linearity. For this reason,
it is not preferable to use IIR filters in digital signal processing when the phase is of
the essence. Otherwise, when the linear phase characteristic is not important, the use
of IIR filters 1s an exeellent solution.

A digital filter, H(e/®), with infinite impulse response (IIR), can be designed by first
transforming it into a prototype analog filter H,.(e/®). and then design this analog
filter using a standard procedure. Once the analog filter is properly designed, it is then
mapped back to the discrete-time domain to obtain a digital filter that meets the
specifications.

There are two main techniques used to design IIR filters:
a) The Impulse Invariant method, and

b) The Bilinear transformation method.

Low-pass Butterworth analog filters are filters whose frequency response is a
monotonous descending function. They are also known as “maximally flat
magnitude” filters at the frequency of Q = 0, as first 2N-1 derivatives of the

transfer function when Q = 0 are equal to zero.

Butterworth filter is characterized by 3dB attenuation at the frequency of Q=1, no
matter the filter order is. Figure 8.1 illustrates frequency responses for a few various

parameters N (filter order).



0dB

Figure 8.1. Frequency response of Butterworth filter

Butterworth filter iz defined wia expression:

) 2 . . 1
H.0Q) =H,(19)- H (1) = =
where:
L2 1z the frequency; and
I 15 the filter order.
50 APPARATUS REQUIRED:
SLNO. | ITEM MAKERS BRANGE
NAME
01 Computer
02 Matlab




9.0 PFROCEDURE:
To open the Filter Design & Analysis tool. go to matlab command Window and
execute the following command
= =fdniool
The tollowing window will appear

Filter Design & Analysis Tool - [untitled fda] = |[-E

File. Edit. Analysis Targets View Window Help

N SR LPLPXDENYM4+D - BEHONE N

— Current Fiter Infnrmaticn—‘ ’— Fitter

Structure: Direct-Form FIR *Mag. (dB)

Order: 50

Stable: es |
0L

Source: Designed

4
’ﬁ‘pass
T

stop

| L

- | 1 o
[ Store Filter ... ] i F It Fe/2  [{Hz)
I Eifer Y pass stop
— Responseg ——— X — Fiter —MM8M8M8 ™ Freguency —_— IMagnitude ——
EHD ::" Lowpass b i) Specify ... |10 Units {4z - Units 45 =
' |Highpass b S ;
S | Bandpass e P/ 40000 spass |1
o it
") Bandstop — Opticn __ Fpass (F500 Astop |80
L | pifferentiater v | || Denstty 20 Fstop |12000
@ - Design
EE O IR Bitterworth
@ @ FiH Equiripple b

Ready

After getting the Filfer Design & Analysis tool(above window), select the following
Farameters

Response type : Lowpass/ Highpass

Design Method : Select I[TR Butterworth

Filter Order : Minimum order

Frequency Specification : Select units and mention sampling frequency(Fs),
passband frequency(Fpass) and stopband
frequencie(Fstop) according to  the requirement.

Magnitude Specification : Select units and mention Apass and Astop

Click on the * Design Filter’ button to see the magnitude response of the desired filter



ﬂ Filter Design & Analysis Tool - [untitied fda *]

File Edit Analysis Targets View Window Help

DeWdask 220X |1 HENM: <+ D BLOE|N

=

Dé;ignirg Filter ... Done

To see impulse response : Amadysis — Ingprilse Resporse

— Current Fitter information— — Magnitude Response
= I
Structure; Direct-Forml, x .
Second-Order = i
Sections R=) L :' """"""""""""
Order: 3 a L :
i = A00t----------- L
Sections;: 18 b= |
o 1
Stable; Tes L R e :
Source: Designed 1
B: 11 DRSPS b
[ Store Fitter I 0 5
([ Fifter Manager ] Frequency (kHz)
T _R&Epcns& — — Filter o FrE-quenc_}r ——F i IMagnitude r———
@ || owoass - *) Specify or...[10 Units! gz = Units] 45 b
- |Highpass - = . |23000 ' ;
-u"__T'E S @ Minimum o... Fa: L, P—
(7} Bandst — Opti ;{5600
T?ﬂ : andstop Opticn - Fpazs: - Astop: [80
A Differentiator > | || Mateh stopb.. 7 Fetop: 12000
Jﬁ] - Design
@ IR gutterworth
J@ () FIR Equiripple -

B Titter Design & Anelysis Tool - Tuntitlzd.fda * —rl[=E
File: -Edit - Anawsis Targets VWiew Window Help
TEHSW A0 SK (TR ENE s B8LeRE| W
— Current biterintormation —— Irpuilze Rezprngea
&3
Structure: Direct-Form il
Second-0O-der 0.2
Secticne o
(5
Crrdcr 21 o
Scctions: 18 E‘ o
Stoblc: Yoz
Sourco: Ciezigrod -0
| Storetifar ]
Silcr Manoger Tirres (resrcinnks)
— Heepores ——— — ritar ——— Freguency — Magnitude
B s - T Spacifeor. AT Unta: bz v Unit3:-.c||:_| -
T [IRT LY = = 22000
'g & Eandpmas @ Mirimimon Fs. A
i) Eandetop i : [S500 -
qmr. e andetop Ciption Fpaza: i Aslog, (80
: "/ |pirrarsnator - hlatch Btopb.. W Fstop 12000
ey Creaign
&%{ R piterworth 7
m 2 FIR Fipuirapele -
Camnoubiey Flespruss o dane

To see magnitude and phase responses : Analysis — Muenitude aud Phase responses




B Fitter Design & Analysis Tool - [untitled.fda *]
Fite Edit Analysic Targets View Window Help

)

DEESR | #ALX|DENUMES+ T BHONE N

— Current Fitter Information— — Magnitude (dB} and Phase Responzes

Structure: Direct-Form |,
Second-Order

Sections %

Order; 1 §
Sectiong; 16 =
=]

Stable; Yes L}
=

Source: Designed

Phase (radians)

CesigmEiter

]

[Computing Respanse ... done

=

[ SioreFifer.. ) )

(__Filer Manager .. Frequency (kHz)

— Response —— — Fiter —— Frequency o Iagnitude e
© || pwoass | || © Specify or._.[10 Units) 4z v Units{ 4 -
) |Highpass 2 || ey i . 148000 7
g_,,E () Bandpass @ Minimum o, .. Fs: - Vi

"1 Bandsto T [ — - [@600 |
??ﬂ 2 P Option - Fpass: & 2 - Astop: [20
’ "~ | Differentiator w | || Match \stopb.. | Fstop: 12000
@ ~ Desgign ———— 1 §
@ IR Butterworth v
J@ 0 FIR Equiripple =

To see the filter coefficients : Analysis — Filter Coefficients

o= -
R Fitter Design & Analysis Tool - [untitied fda * o |[E
File Edit Analysis Targets View Window Help
NEHER LPLOX DRENEH2+0  BEHONE N
— Current Fiter Information— - Filter Coefficients
Structure: Direct-Form |, W T s .i
Second-Order on #1 =
Secions: ([ (| [TTTTTTTTTTTTTTTTTTTTTTT
[Numerator:
QOrder: H 1
Sections: 16 !z
Stable:  Yes |2 _
SGLLI’G&: Desﬂﬂed Dfncmnanc:: -
4 ,'ME‘MI - J
(—_Filter Managsr B
I—Respanse ———— Fiter ———  Frequency ~  Magntude -
| [TN—— v || ©) specifvor.10_| Units: 4z »!| || Unisigg =
Hinhnazs L4 i 2 . |aznon 2
Bandiass @ Minimum o,.. Fs: 48000 Soass: T
:__ Bandstop - Optisn—————— |  Fpass: 5600 Astop: Bl
* | Differentiator »| || Match stopb.., = Fstop: 112000
= Design ——
@R Buterworth =
O FR Equiripple -
Computing Responde ... done

2

10.0 SAFETY:
NOT APPLICABLE

11.0 DISPOSAL:
NOT APPLICABLE



9.0 REPORT WRITING:
9.1 Attach the rough note with your final report.
9.2 The 1% Page of the report shall be as per the format shown in Annexure —1I.
9.3 Write your final report as per the Work Instruction

ANNEXURE-I

NAME:

ROLL NO.: DEPARTMENT:

DATE OF SUBMISSION: DATE OF EXPERIMENT:

CO-WORKER

NAME ROLL NO.

1.

TITLE

OBIJECTIVE:

Marks Obtained Signature of the
Sessional -  charge



WORK INSTRUCTION

8.0 JOB/EXPERIMENT NO.: PC-RE/P/403/09

7.0

NAME OF JOB/EXPERIMENT:
FIR filter design using rectangular, Hamming and Blackman windows.

7.0 OBJECTIVE:

To design FIR filter using rectangular, Hamming and Blackman windows.

8.0 PRINCIPLE:

FIR filters are digital filters with finite impulse response. They are also known
as non-recursive digital filters as they do not have the feedback (a recursive part of a
filter), even though recursive algorithms can be used for FIR filter realization. FIR
filters can be designed using different methods, but most of them are based on ideal
filter approximation. The objective is not to achieve ideal characteristics, as it is
impossible anyway, but to achieve sufficiently good characteristics of a filter. The
transfer function of FIR filter approaches the ideal as the filter order increases, thus
increasing the complexity and amount of time needed for processing input samples of
a signal being filtered.

An FIR filter can be described by the difference equation
y(n) = Bilobix(n — 1)

and by the transfer function
R WE) wm il
H(ef‘”) = mfz:l:O bie o
We address the problem of designing an FIR filter that meets specifications of limited
deviation from the ideal response in specified frequency bands. The window design
method does not produce filters that are optimal (in the sense of meeting the design
specifications in the most computationally-efficient fashion), but the method is
easy to understand and does produce filters that are reasonably good. Of all the hand-

design methods, the window method is the most popular and effective.

In brief, in the window method we develop a causal linear-phase FIR filter by
multiplying an ideal filter that has an infinite-duration impulse response (IIR) by a
finite-duration window function:

Rn] = hy[n]. Wn]

where /Afn/ is the practical FIR filter, h4[n] is the ideal IIR prototype filter, and W [n]
is the finite-duration window function. Some definition of the important windows are
given below.



Rectangular window:

1;0<sn<M

Win] = {0; otherwise

Hamming window:

2nn

0.54—0.46003(7) c0=n<M

0; otherwise

Win] = {

Blackmam window:

2nrn

0.42 — 0.5cos (T) +0.08cos(Ann/M); 0 <n<M

Win] = {

0; otherwise

5.0 APPARATUS REQUIRED:

SL.NO. | ITEM MAKERS RANGE
NAME

01 Computer

02 Matlab

12.0 PROCEDURE:

To open the Filter Design & Analysis tool. go to matlab command Window and
execute the following command

=>fdatool

The following window will appear



e

Filter Design & Analysis Tool - [untitled.fda]

Fil

e Edit  Analysis

Targets

— Current Filter Infnrmﬂticn—‘ ’— Fitter

Wiew  Window

Help

NEHER 220X DEHDUH£4+0  BLHORE W

= e

- De=ign

IR |Butterworth

1

@ FR Equiripple -

Structurs: Direct-Form FIR *Mag. (dB)
Order: S0
Stable: Yes | _l_
: Or A
Source:  [Designed T pass
stop
| |
> | 1 e
[ Store Filter ... | 0 E Fsf2 T {Hz)
(—_Fiter Manager .. s i) '
— Re=ponze — Filter — Freguency — Magnitude E—
= Lowpass - ) Specifyo.- {10 Units|y= - Units. 4p -
| Highpass o @ Minimum ... Fs: 48000
| Bandpass i Apass |1
I __ Cioti 15600
C E!_ﬂndstu_p Dptu:l.n = Fpass Astop 180
' | Differentiator ) Censity 20 Fatgp (12000

FleleE= 6 es

Ready

After getting the Filter Design & Analysis tool(above window), select the following

FPararmeters

Response type : Lowpass/ Highpass

Design Method : Select FIR Window
Select required window type from Window options.

Filter Order : Minitrmumn order

Frequency Specification : Select units and mention sampling frequency(Fs)

and cutoff frequency(Fc).

Click on the * Design Filter’ button to see the magnitide response of the desired filter



-

Filter Design & Analysis Tool - [untitled fda *]
File Edit Analysis Targets View Window Help

Deuan »2 oK 0L ENUEE: D BLHONE W

— Current Fiter Information—

—Magnitude Responze.

e=En ==

i T S E—— P~ B ———
Structure: Direct-Form = i i i i
= _EE ___________ A s e e e e 12 e i R —, S e e
Cirder: 10 = : : A .
Stable:  Yes = l ; | i
=2 1 | | }
Source:  Designed e e ittty V7Tl SR it | IR
] i f i i
= : : : :
i et ittt R S e ety TRl et
i i i i
[ Store Fiter 0 5 18 15 20
[ Fifter Manager ] Frequency (kHz)
— Response —— Fitter P Freguency — Magnitude E—
G Lowpass - @ Specifyo.. |10 Units|{Hz -
. = { il - - - -
;;?_I'Lﬂﬂ;; ) Mimimum..: Fs: 45000 The attenuation at cutoff
[ | P‘ :
:\. | Bandstop _Pjrggﬂla v Fe: 10800 frequencies is fixed at 6
- | Differentiator - Ny el a8
r@ — Design —| Window:  Rect. =
3 : - 4 (half the pazsband gain}
20 IR Butterworth v.
@ @ FR yyindow - View

_D'esigning Fitter ... Done

To see impulse response | Aralysis — fmpridse Response




.

B Fitter Design & Analysis Tool - [untitled.fda *] =-|[-=
File' Edit Analysis Targets View Window Help
DSl 22X DM EENME: 0B »
— Current Fitter information Imoulze
1 T I I |
Structure:  Direct-Form Kl _""""""E ____________ : """""? ____________ E__
Order: 10 ﬁ (= ' ' i ‘
Stable:  Yes £ 5 i ! : '
Source: Cesigned E .»'. : .!. ! .!.: L
7 & | | i »
; L ! i 4 i
L Elore Filfer / 0 20 i 150 200
C_Fillsr Hananer ' Time (useconds)
— Besponge —————~ -Fiter ————— Freouencv . —— Maanitude —
EHH i B -] @ Specifv .. 10 ”"”R.Hz -
é_rﬁ gg-lﬂhdr‘[';qaqsqs = Wiy Fs: 48000 _ The attenuation at
(™) Bandstop I £ (10800 cutoff
El| e (W'5cake Pas... it
ﬂﬁ = n.:_:g_in;rpnm—v Wvindiow: Rect. w frequencies iz ficed at g
\@ '_ : "P‘_Euﬁerwurth b o
b.uE| @ PR window il | Mfigw | ihalf the nazshand
CEsinn Firen
:':l"ﬂ.:‘\.l‘.'.'.‘; Responee _ done -
To phase responses | Asahndy — Phave resposeses
B Firter Cesign & Analysis Tool - untitied.fda *] E=REc

File' Edt Analysiz  Targets  View  Windew Help

N HeR 280X TE DM+ BEHON

Current Fitter Irformation — Phase Resoonse
- - IR s -
: e T ! ;
Structure: Direzt-Form E 2 ____‘_“:\1;__: __________ -
Orde: 10 T - R ]
Stablz:  Ves £ ; e £
o ] e - -
Source:  Desgned By |- = R jir TR
a2 : TR
" A RO Wiah el 4
i Sinre Filfer 1 e 5 10 15 20
(—Fiter Hanager 1 Frequency fkHz
— Beepongg ———  — Fitsr —— Fraguancys i IMagnitude —
EH::H I misrmacs - @ S'E'EC|-\|"1I-| lIni= H=z -
5-"% =) Bandoass = Wi Fs: 143000 The attenuation at
Bandstop i o Hozon ratnff
T—,.f e J] Scale Pas.. e
erantiatyr ¥ ; : ¢
@ £ Feginn b———— | Window: Aect . » fraquercies s ficed at €
‘@ "_'I }R; Rirterwarth -
E;E‘ q—lms"ﬂ"\"i"dﬂw o | M (ipw ] AAIT e i) vl

{ fae 3;5\;. ;E_G-_J-D'-iﬁ [ =]

To see the filter coefficients | Awabnd — Fifter Coefficienty



e

B} Filter Design & Analysis Tool - [untitled fda *]

File Edit Analysis  Targets View Window Help

NEHER 220X N HENE& 2 M E

g

M pRiing Response _ oo

— Current Fitter Information — Fitter Coefficients
i/ 2 | D.045722208510160655 -
|—0_047508453T77875080¢8
Cirder: 10 =
) I—'3_0961322239€54EIBDEI4
stable:  Yes 0_049953344480326227 =
Source: Designed 0.319324417584 794369
0.45706144519060254
_0.2153244717247343589 T
L Clore Filter 1
_FEifer Manager -~ ]
— Besoonse e ———————— T Freguency  — Macnitude —
I'_‘Hil' .'_I Lawminase - @) SI}ECiﬁf 1'." |||'||1'R.-H2 -
g‘g ) g;'fn'g‘[;"ﬂ?s - Mirirmim... Fa: ﬁi_lﬂ':' y The attenuation at
| Bandstop —iotin s 10200 cutoff
;-F: (] — i [#] Scale Pas... :
“ﬁ = nﬁ;iﬁﬂnrﬂn’mam—v Window: Rect ;i frequencies iz fixed at'g
= = 3 5 A 4B
BB © ™ sutierwortn
: (=] = | :
b.nE' FIF window || Dfigwr] rhalf the nazshand
(.| ' ' esian Fif!

13.0 SAFETY:

NOT APPLICAEBLE

14.0 DISPOSAL:
NOT APPLICAELE

9.0 REPORT WRITING:

9.1 Attach the rough note with vour final repott.
92 The 19 Page of the report shall be as per the format shown in Annexure — L
9.3 “Write wour final report as per the Work Instruction



ANNEXURE-I

NAME:

ROLL NO.: DEPARTMENT:

DATE OF SUBMISSION: DATE OF EXPERIMEN'T:

CO-WORKER

NAME ROLL NO.

1.

THLE

OBJECTIVE:

Marks Obtained Signature of the
Sessional in - charge



WORK INSTRUCTION

9.0 JOB/EXPERIMENT NO.: PC-RE/P/403/10

8.0

NAME OF JOB/EXPERIMENT:

Writing & execution of small programs related to arithmetic operations
and convolution using Assembly Language of TMS320C5416/6713
Processor, study of MAC instruction.

9.0 OBJECTIVE:

10.0

To write & execution of small programs related to arithmetic operations
and convolution using Assembly Language of TMS320C5416/6713

Processor, study of MAC instruction.

PRINCIPLE:

The TMS320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to
as the device unless otherwise specified) is based on an advanced modified Harvard
architecture that has one program memory bus and three data memory buses. This
processor provides an arithmetic logic unit (ALU) with a high degree of parallelism,
application-specific hardware logic, on-chip memory, and additional on- chip
peripherals. The basis of the operational flexibility and speed of this DSP is a
highly specialized instruction set.

Separate program and data spaces allow simultaneous access to program instructions
and data, providing a high degree of parallelism. Two read operations and one write
operation can be performed in a single cycle. Instructions with parallel store and
application-specific instructions can fully utilize this architecture. In addition, data
can be transferred between data and program spaces. Such parallelism supports  a
powerful set of arithmetic, logic, and bit-manipulation operations that can all be
performed in a single machine cycle. The device also includes the control
mechanisms  to manage interrupts, repeated operations, and function calls.



Functional Overview

RHEA bus

| P, C, D, E Buses and Control Signals |
[EEE U0 [UNE {
23lald 2 2333 2
,B4K RAM 64K RAM 16K Program
-1 54X cLEAD Single Access Dual Access
4 ROM
Program Program/Data
.
t L
| MBus ]
: N rHEA Ve —
T1BUS Bridge RHEA Bus A R
! a I
g1 ; |
L XIO Enhanced XIO (. 4.5 |l
v [ c

—1

=

IN—]

—

McBSP3

T6HPI )l 16 HPI I: ]
— xDMA RHEADUS
\'—-V

logic

[V TIMER

Y@ Y

¢

A

Software Development Tools Overview:
The following figure illustrates the C54x software development flow. The shaded

portion of the figure highlights the most common path of software development; the
other portions are optional.



L] L
"

iz "
SOOI .
fies .

g

| o Compier

k
T Aszemiler o '“‘,_rl’:;'l‘"“‘i'

B o Ansisi

B

fissnnbiby

ATChinder

= ) e L AsREmRHer &
il | o T
- Bommemier A ot
- -
% 7 i T
i CcoFF @
PRI ¢ 4] -,
Archives b o e

Deinagiing
e

|38 COnversian
Lilikky
L ] %
EFROH S Crasg-releranee
RO rammer ["'Iml‘ﬂﬂl“mrl ( listay _] AR

Fig:-ThS 3200 54w Software Developrnent Flow
The following list describes the tools that are shown i the figure:

The CfCH compiler translates CICH sorce code into 54 asse by languaze source
code

The assemb ler franslates assetnbly language source files into machine language COFF ohject
files. The TIWEZ20C54x tools melude too asserablers. The muermorie assembler accepts
Cody and Codxrmnernome asserch Iy source files. The alzebraic asserabler accepts
Codxalgebraic aszernbly source files. Somce files can confain instructions, assembler
direchres, and macro directives.

The Yindeer corebine s relocatdble COFF object files (created by the asserbler) indo a angle
executable COFF ohject module. Linker ditec trves allows to corabine object file sections,
bind gec hions or syrrbols to addresses or wathin mermory ranges, and define or redefine zlobal
syrrhbols.

The arc hiver collects a group of files into a single archive file.



The library-build utility builds your own customized C/C++ runtime-support library.
Standard runtime-support library functions are provided a ssource code in rts.src and as
object code in rts.lib.

The TMS320C54x Code Composer Studio debugger accepts COFF files as input, but most
EPROM programmers do not.

5.0 APPARATUS REQUIRED:

SL.NO. | ITEM MAKERS NAME | RANGE
0l Computer
02 TMS320C5416/6713 Texas Instruments
Processor
03 Code Composer Studio | Texas Instruments
IDE

15.0 PROCEDURE:
To open the CCS window: Double click on CCS icon in the desktop
Create a new project: Project— New
Type the project name(project name) & store in myprojects folder.
To open an existing project: Project —Open
Files to be added to the project: Project— Add files to project
a) C:iti\c5400\cgtools\libirts.lib
<Select type of the file as : library(.lib)>
b) C:\ti‘tutorial\dsk 54 16\datedisplay'\mainapplication
<Select type of the file as : linkar(.cmd)>
To write program: File—New—Source file
To save: File—save

To compile : Project— Compile File

To build the project : Project— Build
<Obtained Build successful >

To execute: File—Load program
< Select project name.out file>

To Run : Debug—Run
Observe the output on the stdout window or waveform using graph or CRO.

To view waveforms: View— Graph—time/frequency



Changes in the graph property dialog box to be made
a) Display type— Dual(to observe 2 waveforms)
b) Title — User defined.
¢) Start address-upper display—x
<User defined variable array names used in C program.

Note: x,y should be made global to be used by graph>
d) Start address-lower display—y
¢) Acuisition Buffer size —60

<depends on the array size>

f) Display Buffer size—60

<depends on the requirments>
g) DSP data type- 32 bit floating point
h) Auto scale — ON

<if off choose max vy value=1>

16.0 SAFETY:
NOT APPLICABLE

17.0 DISPOSAL:
NOT APPLICABLE

9.0 REPORT WRITING:
9.1 Attach the rough note with your final report.
9.2 The 1% Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write your final report as per the Work Instruction

ANNEXURE-I
NAME:
ROLL NO.: DEPARTMENT:
DATE OF SUBMISSION: DATE OF EXPERIMENT:
CO-WORKER
NAME ROLL NO.
s
2.
3.
4.




THLE

OBJECTIVE:

Marks Obtained Signature of the
Sessional in - charge



WORK INSTRUCTION

1.0 JOB/EXPERIMENT NO.: PC-RE/P/403/11

2.0 NAME OF JOB/EXPERIMENT: Writing small programs in VHDL/Venlog and downloading
onto Xilinx FPGA.

3.0 OBJECTIVE: To write a program in HDL and thereby download the bit stream file on to Xilinx
FPGA.

4.0 PRINCIPLE:

A field-programmable gate array (FPGA) 15 anintegrated circuit designed to be conficured by a
customer or a designer after manufacturing—hence "field-programmable”. The FPGA configuration is
venerally specified using ahardware description language (HDL), similar to that used for
an application-specific integrated circuit (ASIC). Contemporary FPGAs have large resources of logic
pates and RAM blocks to implement complex digital computations. As FPGA designs employ very
fast IOs and bidirectional data buses it becomes a challenge to verify correct timing of valid data
within setup time and hold time. Planning enables resources allocation within FPGA to meet these time
constraints. FPGAs can be used to implement any logical function that an ASIC can perform. The
ability to update the functionality after shipping, partial re-configuration of a portion of the design and
the low non-recurring engineering costs relative to an ASIC desien offer advantages for many
applications.

Interconnection

FPGAs consist of three major resources: Logic Block Resources
I/0 Cell
¢ Configurable Logic blocks (CLB) =
* Routing blocks ( Programmable AR EAE -l
Interconnect) el ol el s

¢ TO blocks

Configurable Logic Blocks (CLBs): These
blocks contain the logic for the FPGA. CLBs
contain  RAM  for creating  arbitrary
combinatorial logic functions, also known as
lookup tables (LUTs). It also contains flip-flops

for clocked storage eclements, along with
multiplexers in order to route the logic within the
block and to and from external resources. The multiplexers also allow polarity selection and reset and
clear input selection.

FPGA Architecture

Programmable Interconnect (Routing Blocks): In the above figure a hierarchy of interconnect
resources can be seen. There are lines that can be used to connect the CLBs present on the chip without
inducing much delay. These lines can also be used as buses within the chip. There are also short lines
that are used to connect individual CLBs that are located physically close to each other. Transistors are
used to turn on or off connections between different lines. There are also several programmable s witch
matrices in the FPGA to connect these long and short lines together in specific, flexible combinations.
Three-state buffers are used to connect many CLBs to a long line, creating a bus. Special long lines,
called global clock lines, are specially designed for low impedance and thus fast propagation times.



These are connected to the clock buffers and to each clocked element in each CLB. This is how the
clocks are distributed throughout the FPGA, ensuring minimal skew between clock signals arriving at
different flip-flops within the chip. In an ASIC, the majority of the delay comes from the logic in the
design, because logic is connected with metal lines that exhibit little delay. In an FGPA, however, most
of the delay in the chip comes from the interconnect, because the interconnect — like the logic — is fixed
on the chip. In order to connect one CLB to another CLB in a different part of the chip often requires a
connection through many transistors and switch matrices, each of which introduces extra delay.

Configurable 1/0 Blocks: A Configurable input/output (I/O) Block is used to bring signals onto the
chip and send them back off again. It consists of an input buffer and an output buffer with three-state
and open collector output controls. Typically there are pull up resistors on the outputs and sometimes
pull down resistors that can be used to terminate signals and buses without requiring discrete resistors
external to the chip.

3.0 APPARATUS REQUIRED:

SL.NO. | ITEM MAKERS NAME
01 Computer

02 Xilinx ISE Xilinx

03 Xilinx FPGA Board (Spartan-3) Xilinx

6.0 PROCEDURE:
6.1 To start ISE, double-click the desktop icon or start ISE from the Start menu by selecting:
Start — All Programs — Xilinx ISE 10.1— Project.
6.2 To create a new project:

Select File > New Project... The New Project Wizard appears. Type tutorial in the Project
Name field. Enter or browse to a location (directory path) for the new project. A tutorial
subdirectory is created automatically. Verify that HDL is selected from the Top-Level
Source Type list. Click Next to move to the device properties page.
Fill in the properties in the table as shown below:

Product Category: All

Family: Spartan3

Device: XC3S200

Package: FT256

Speed Grade: -4

Top-Level Source Type: HDL

Synthesis Tool: XST (VHDL/Verilog)

Simulator: ISE Simulator (VHDL/Verilog)

Preferred Language: Verilog (or VHDL)

Verity that Enable Enhanced Design Summary is selected.
Leave the default values in the remaining.

6.3 To create a VHDL/Verilog source file for the project:

Click the New Source button in the New Project Wizard.

Select VHDI/Verilog Module as the source type.

Type in the file name.

Verify that the Add to project checkbox is selected.

Click Next.

Declare the ports for the program design by filling in the port.

Click Next, then Finish in the New Source Wizard - Summary dialog box to

complete.

VYVYVVVVYY

VVVVVVYY



The source file containing the entity/architecture pair displays in the Workspace.

6.4 Final Editing of the Verilog/VHDIL. Source:

» Write down the code in Verilog/VHDL in the workspace.
» Save the file by selecting File — Save.

6.5 Checking the syntax of the new VIIDL/Verilog module:

6.6

6.7

6.8

>

VEVYYY VY

YVY W ¥V ¥V VVYy

Y Y

>

When the source files are complete, check the syntax of the design to find errors and
typos.

Verify that Implementation is selected from the drop-down list in the Sources window.
Select the source file in the Sources window to display the related processes in the
Processes window.

Click the “+” next to the Synthesize-XST process to expand the process group.
Double-click the Check Syntax process.

Close the HDL file.

esign Simulation:

Create a test bench waveform containing input stimulus you can use to verify the
functionality of the source module. The test bench waveform is a graphical view of a
test bench. Create the test bench waveform as follows:

Select the counter HDL file in the Sources window.

Create a new test bench source by selecting Project — New Source.

In the New Source Wizard, select Test Bench Waveform as the source type, and type
<source file> tbw in the File Name field. Click Next.

The Associated Source page shows that you are associating the test bench waveform
with the source file counter. Click Next.

The Summary page shows that the source will be added to the project, and it displays
the source directory, type, and name. Click Finish.

You need to set the clock frequency, setup time and output delay times in the Initialize
Timing dialog box before the test bench waveform editing window opens.

Click Finish to complete the timing initialization.

The blue shaded areas that precede the rising edge of the CLOCK correspond to the
Input Setup Time in the Initialize Timing dialog box. Toggle the DIRECTION port to
define the input stimulus for the design.

Save the waveform.

In the Sources window, select the Behavioral Simulation view to see that the test bench
waveform file is automatically added to your project.

Close the test bench waveform.

Simulating Design Functionality:

Verify that the design functions as you expect by performing behavior simulation as
follows:

»

>

»

Verify that Behavioral Simulation and <source file> tbw are selected in the Sources
window.

In the Processes tab, click the “+” to expand the Xilinx ISE Simulator process and
double-click the Simulate Behavioral Model process.

The ISE Simulator opens and runs the simulation to the end of the test bench. To view
your simulation results, select the Simulation tab and zoom in on the transitions.
Create Timing Constraints:

To constrain the design do the following:

Select Implementation from the drop-down list in the Sources window. Select the HDL
souree file.

Click the “+” sign next to the User Constraints processes group, and double-click the
Create Timing Constraints process.



6.9

6.10

Y Y

R VA

Y

Y

6.12

VYVY VVVVVYVVYVYYY

ISE runs the Synthesis and Translate steps and automatically creates a User Constraints
File (UCF). You can also customize the UCF.

Implement Design:

Select the source file in the Sources window.

Open the Design Summary by double-clicking the View Design Summary process in
the Processes tab.

Double-click the Implement Design process in the Processes tab.

Notice that after Implementation is complete, the Implementation processes have a
green check mark next to them indicating that they completed suceessfully without
errors or warnings.

Locate the Performance Summary table near the bottom of the Design Summary. Close
the Design Summary.

Assigning Pin Locations:

To constrain the design ports to package pins, do the following:

Verify that source file is selected in the Sources window.

Double-click the Floor plan Area/IO/Logic - Post Synthesis process found in the User
Constraints process group. The Xilinx Pin out and Area Constraints Editor (PACE)
opens.

Select the Package View tab.

In the Design Object List window, enter a pin location for each pin in the Loc column,
Notice that the assigned pin locations are shown in blue in the package view.

Select File — Save.

Close PACE.

Reimplement Design and Verify Pin Locations:

First, review the Pin out Report from the previous implementation by doing the
following:

Open the Design Summary by double-clicking the View Design Summary process in
the Processes window.

Select the Pin out Report and select the Signal Name column header to sort the signal
names. Notice the Pin Numbers assigned to the design ports in the absence of location
constraints.

Reimplement the design by double-clicking the Implement Design process.

Select the Pin out Report again and select the Signal Name column header to sort the
signal names.

Verify that signals are now being routed to the correct package pins. Close the Design
Summary.

Download Design to the Spartan™-3 Demo Board:

This 1s the last step in the design verification process.

Connect the 5V DC power cable to the power input on the demo board (J4).

Connect the download cable between the PC and demo board (J7).

Select Implementation from the drop-down list in the Sources window.,

Seleet the source file in the Sources window.

In the Process window, double-click the Configure Target Device process.

The Xilinx Web Talk Dialog box may open during this process. Click Decline.
iMPACT opens and the Configure Devices dialog box 1s displayed.

In the Welcome dialog box, select Configure devices using Boundary-Scan (JTAG).
Verity that “Automatically connect to a cable and identify Boundary-Scan chain™ is
selected.

Click Finish.

If you get a message saying that there are two devices found, click OK to continue.
The devices connected to the JTAG chain on the board will be detected and displayed



VY VYVVY ¥

>

in the iIMPACT window.

The Assign New Configuration File dialog box appears. To assign a configuration file
to the xc3s200 device in the JTAG chain, select the counter.bit file and click Open.

If you get a Warning message, click OK.

Select Bypass to skip any remaining devices.

Right-click on the xc3s200 device image, and select Program... The Programming
Properties dialog box opens.

Click OK to program the device.

When programming is complete, the Program Succeeded message is displayed. On the
board, if LEDs are lit accordingly, then it is confirmed that the design is working
properly.

Close iMPACT without saving.

7.0  Disposal: not applicable

8.0 Safety:

8.1 Handle the Xilinx FPGA board with proper care.
8.2 Connect the JTAG & Power cable properly before downloading the bit stream

file.
8.3 Close the project file before closing the Xilinx ISE tool otherwise it may get

damaged.

9.0  Report Writing:

9.1 Attach the rough note with your final report.

9.2 The 1% Page of the report shall be as per the format shown in Annexure — L.

9.3 Write the working principle of your experiment & write the corresponding
VHDI/Verilog program.

9.4 Write your final report as per Work Instruction.

ANNEXURE-I
NAME:
ROLL NO:.: DEPARTMENT:
DATE OF SUBMISSION: DATE OF EXPERIMENT:
CO-WORKER
NAME ROLL NO.
il
2




TITLE

OBJECTIVE:

Marks Obtained Signature of the
Sessional in - charge



WORK INSTRUCTION

1.0  JOB/EXPERIMENT NO.: PC-RE/P/403/12

2.0 NAME OF JOB/EXPERIMENT: Mapping of some DSP algorithms onto FPGA.
3.0 OBJECTIVE: To map some DSP algorithms onto Xilinx FPGA.
4.0  PRINCIPLE:

In this experiment HDL coding for linear convolution has been done and it is mapped
onto Xilinx FPGA board.

Linear convolution theorem:
Convolution is a mathematical way of combining two signals to form a third signal. It is
important because it relates the three signals of mterest: the input signal, the output
signal, and the impulse response. Linear convolution 1s performed to obtain the output
response y[n] of a LTI system, when an input stimulus x[n] is given to it & the impulse
response for the system is h[n]:

Where * means linear convolution operation.
The block diagram representation for linear convolution is depicted below:

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a
customer or a designer after manufacturing—hence "field-programmable".

FPGAs consist of three major resources:
1 Configurable Logic blocks (CLB)
2 Routing blocks ( Programmable Interconnect)

3 IL/O blocks

5.0 APPARATUS REQUIRED:

SLINO. | ITEM MAKERS NAME
01 Computer

02 Xilinx ISE Xilinx

03 Xilinx FPGA Board (Spartan-3) Xilinx

6.0 PROCEDURE:
6.1 Start ISE.
6.2 Create a new project.



7.0

8.0

9.0

6.3 Create a VHDI./Verilog source file for the project. Write the following HDL eode for
linear convolution.

module conv(
input [3:0] x,
input [3:0] h,
output reg [6:0]y
L
reg [3:0]i,;
reg [6:0]xL.h1;
always @(*)
begin
xl=x;
h1=h;
for(i=4; i<7;1=1+1)
x1[i][=7b0;
for(i=4; i<7;1=1+1)
h1[i]=7"b0;
for(1=0; i<7;i=1+1)
begin
y[i]=7"b0;
for(j=0; j<=1;j5+1)
begin
VI [T*h 1 [is]):
end
end
end
endmodule

6.4 Check the syntax of the new VHDL/Verilog module.

6.5 Simulate the design functionality to check whether the design logic is working fine.
6.6 Create Timing Constraints:

6.7 Implement the design.

6.8 Assign Pin Locations.

6.9 Reimplement the design and verify Pin Locations.

6.10 = Download the bit-stream file onto the Spartan™-3 Demo Board.

Disposal:  not applicable

Safety:
8.1 Handle the Xilinx FPGA board with proper care.
8.2 Connect the JTAG & Power cable properly before downloading the bit
stream file.
8.3 Close the project file before closing the Xilinx ISE tool otherwise it may get
damaged.

Report Writing:



9.1 Attach the rough note with your final report.

9.2 The 1% Page of the report shall be as per the format shown in Annexure — 1.
9.3 Write the working principle of vour experiment & swrite the corresponding
VHDL/Verilog program.

9.4 Write vour final report as per Work Instruction.

ANNEXURE-1

NAME:

ROLL NO.: DEPARTMENT:
DATE OF SUBMISSION: DATE OF EXPERIMENT:

CO-WORKER

NAME ROLL NO.

1.

TITLE

OBIJECTIVE:

Marks Obtained Signature of the

Sessional in - charge



