— THE NEOTIA
UNIVERSITY

KilE B REIGE CARIE

DEPARTMENT OF ROBOTICS & AUTOMATION

Localization Techniques

LAB MANUAL

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NO.: 1

NAME OF THE EXPERIMENT: Two Programming Exercises for Robots.

OBJECTIVE: To perform the Robot programming exercise for Pick and Place
operation.

THEORY:

Most controllers for industrial robots provide a methed of dividing a program into
one or more branches. Branching allows the robot program to be subdivided into
convenient segments that can be executed during the program. A branch can be
thought of as a sub routine that is called one or more times during the program.
The subroutine can be executed either by branching to it at a particular place in the
program or by testing an input signal line to branch to 1it. The amount of decision
logic that can be incorporated into a program varies widely with controllers. They
permit the use of an incoming signal to invoke a branch. Most controllers allow the
user to specilty whether the signal should be interrupt the program branch currently
being executed, or wait until the current branch completes. The interrupt capability
1s typically used for error branches. An error branch is invoked when an incoming
signal indicates that some abnormal event has occurred. Depending on the event
and the design of the error branch, the robot will either take some corrective action
or simply terminate the robot motion and signal for human assistance.

A frequent use of the branch capability is when the robot has been programmed to
perform more than one task. In this case, separate branches are used for indicating
which branch of the program must be executed and when it must be executed. A
common way ol accomplishing this 1s to mate use of external signals which are
activated by sensors or other interlocks. The device recognizes which took must be
performed, and provide the appropriate signal to all that branch. This method is
frequently used or spray painting robot which have been programmed to paint a
limited variety of parts moving post the workstation of a conveyor photoelectric
cells are frequently employed to identify the part of to be sprayed by distinguishing
between the geometric features of different parts. The photoelectric cells are used

to generate the signal to the robot to call the spray painting sub routine
corresponding to the particular part.

Robot programs have thus far been discussed as consisting of a series of points 1n
space, where each point 1s designed as a set of joint coordinate corresponding to
the number of degree of freedom of robot. These points are specified as in absolute
coordinates. That is when the robot executes program; each point is visited at
exactly the same location every time. The new concept involves the use of a
reloatable branch.

A relocated branch allows the programmer to specify a branch involving a set of
internal points in space that are performed relative to some defined starting point
for the branch. This would permit the same motion subroutine to be performed at
various locations in the workspace of the robot. Many industrial robot shave the
capacity to accept reload able branches as a part of program. The programmer
indicates that a relocatable branch will be defined and the controller records
relative or Incremental motion points rather than absolute points.

PROGRAM 1:
POINT NAME EXPLANATION
SAFE Safe location to start and stop
PICK LIP Location of part pick-up and of chute
INTER Intermediate point above chute to pass through.
Loc 1 Location of first pallet position
Loc 2
...... Loc 24 Location of 24" pallet position
ABOVE 1 Location above 1% pallet position
.«...ABOVE 24 Location above 24" pallet position.

j% J’A”ﬂ{__{.)ih lé&ﬁho_né_ S do Tlhachale
bendinge n_dobt_ g

Suppose that the operation required the robot to pick up parts from an input chute

and place them on a pallet with 24 positions. When a start signal 1s given, the robot
must begin picking up parts and loading them into the pallet, continuing until all 24
positions on the pallet 1s filled. The robot must then generate a signal to indicate
that the pallet 1s full, and wait for the start signal to being the next cycle. When the
robot 1s directed to go to the point name in the program, it goes to the associated
joint coordinates. In creating robot programs for palletizing operations of this type,
the robot 1s programmed to approach a given part from a direction choose to avoid
interference with the other parts.

The speed at which the program 1s executed should be varied during the program
when the gripper i1s approaching a pick up of drop off point, the speed setting
should be at a relatively slow value. When the robot moves larger distance the
chute and the pallet, higher speed would be programmed.

PROGRAM 2:

Program for Pick and Place activity:

STATEMENT STATEMENT DESCRIPTION
BRANCH PICK The branch of program indicating part picks.
MOVE INTER Move to an intermediate position chute.
WAIT 12 Wait for an inceming part to chute.
SIGNAL 5 Open gripper fingers (Sensor control)

MOVE PICK-UP

Move gripper and Pick-up the object.

SIGNAL 6 Close the gripper to grasp the object.
MOVE INTER Depart to intermediate position above chute.
END BRANCH End of pick-up activity.

BRANCH PLACE Start of placing activity.

MOVE 7 (-30) Position part and gripper above the pallet .
SIGNAL 5 Open gripper to release the part.

MOVE Z (50) Depart from the place point.

END BRANCH End of place activity.

CONCLUSION: Thus, we have studied how to perform Pick and Place operation.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NO.: 2

NAME OF THE EXPERIMENT: Exercise on Robotic Simulation Software.

OBJECTIVE: To study the Robot path planning using Robotic simulation
software.

THEORY:

The locus of points along the path defines the sequence of position through which
the robot will move its wrist. In most applications, an end effector is attached to the
wrist and program can be considered to be the path in space through which the end
effector 1s to be moved by the robot.

Since, the robot consists of several joint (axes) linked together, the definition of the
path in space in effect requires that the robot move its axes through various
positions in order to follow that path for a robot with six axes, each point in the
path consists of six coordinates value corresponds to the position of one joint.
There are basic robot anatomies; Polar, Cylindrical, Cartesian and Jointed Arm.

Each one of three axes associated with the arm and body configuration and two or
three additional joints are associated with wrist. The arm and body joint determines
the general position in space of the end effector and the wrist determines its
orientation. If we think of a joint in space in the robot program as a position and
orientation of the end effector, there 1s usually more than one possible set of joint
coordinate values that can be used for the robot to reach that point.

For example, there are two alternative axis configurations that can be used by the

jointed arm shown in figure to achieve the target point indicated.

_ﬂxz&e} Paink Taiﬂe'l ’P&:‘n}:/

J

:_ﬁ_'é-@h'—v Jwo ___allernnahve axés Ccm?f\'?wzo/r'om WJith
ond _cltocton __Jacoled ol desiced

T_lzlﬁ%&é_—,ﬁém‘-ﬂ

As shown 1n figure (a) that; although the target point has been reached by both of
alternative axis configurations, there 1s a difference in the orientation of the wrist
with respect to the point. We must conclude from this that the specification of the
joint coordinates of the robot does define only one point in a space that orresponds
to that set of coordinate values. Point specified in this fashion are said to be joint
coordinates. Accordingly, an advantage of defining robot program in this way is
that 1s simultaneously specifies the position and orientation of the end effector at
each point in the path.

Let’s consider the problem of defining a sequence of points in space. We will
assume that these points are defined by specifying the joint coordinates as
described above. Although, this method of specification will not affect the 1ssue we
are discussing here for a sake of simplicity, lets assume that we are programming a
point-to-point Cartesian robot with only two axes and only two addressable point 1s
one of the available points (as determine by the control revolution) that can be
commended to go to that point. Figure (b) shows the four points (possible points)
in the robot’s rectangular space. A program of this robot to start in lower left hand
corner and traverse the perimeter of the rectangle could be written as follows;

Axis- 2
A
1,2 2.2
i [5> Ayis - 1.
1 [} 1 2' L 1
o I @\) e R OBO;_ " \”_/@f_k‘é;pu (e._

STEP MOVE COMMENTS

1 1.1 Move to lower left corner.
2 2,1 Move to lower right corner.
3 2,2 Move to upper right corner.
ul 1,2 Move to upper left corner.
5 iy Move back to start position.

The point designation corresponds to the X, y- coordinates positions in the
Cartesian axis system. In this example, using a robot with two orthogonal slides
and only two addressable points per axis, the definition of points in space
corresponds exactly with joint coordinate’s values.

CONCLUSION: Thus, we have studied the robot path planning using simulation
control software.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NQO.: 3

NAME OF THE EXPERIMENT: Implement Simultanecous Localization and
Mapping (SLAM) with LIDAR Scans

OBJECTIVE: To Implement Simultaneous Localization and Mapping (SLAM)
with LIDAR Scans.

THEORY:

This example demonstrates how to implement the Simultaneous Iocalization And
Mapping (SLAM) algorithm on a collected series of lidar scans using pose graph
optimization. The goal of this example is to build a map of the environment using
the lidar scans and retrieve the trajectory of the robot.

To build the map of the environment, the SLAM algorithm incrementally
processes the lidar scans and builds a pose graph that links these scans. The robot
recognizes a previously-visited place through scan matching and may establish one
or more loop closures along its moving path. The SLAM algorithm utilizes the
loop closure information to update the map and adjust the estimated robot
trajectory.

Load Laser Scan Data from File:

Load a down-sampled data set consisting of laser scans collected from a mobile
robot in an indoor environment. The average displacement between every two
scans 1s around 0.6 meters.

The offlineSlamData.mat file contains the scans variable, which contains all the
laser scans used in this example:

load('offlineSlamData.mat');

A floor plan and approximate path of the robot are provided for illustrative
purposes. This image shows the relative environment being mapped and the
approximate trajectory of the robot.

Run SLAM Algorithm, Construct Optimized NMap and Plot Trajectory of the
Robot

Create a lidarSLAM object and set the map resolution and the max lidar range.
This example uses a Jackal™ robot from Clearpath Robotics™. The robot is
equipped with a SICK™ TiM-511 laser scanner with a max range of 10 meters. Set
the max lidar range slightly smaller than the max scan range (8m), as the laser
readings are less accurate near max range. Set the grid map resolution to 20 cells
per meter, which gives a 5cm precision.

maxLidarRange = &;
mapResoclution = 2@;
slamflg = lidarSLAM{mapResclution, maxlidarRange);

The following loop closure parameters are set empirically. Using higher loop
clozure threzhol d helps reject false positives in loop clozure identification process.
However, keep in mind that a high-score match may still be a bad match. For
example, scans coll ected in an environment that has similar or repeated features are
more likely to produce false pozitives. Using a higher loop closure search radius
allows the algorithm to search a wider range of the map around current pose
estimate for loop closures.

slamble. LoopClosureThreshold = 218;
slamble. LoopClosureSearchRadius = 8;

Observe the Map Building Process with Initial 10 Scans

Incrementally add scans to the slamAlg object. Scan numbers are printed if added
to the map. The object rejects scans if the distance between scans is too small. Add
the first 10 scans first to test your al gorithm.

for i=1:10
[isScanAccepted, loopClosureInfo, optimizationInfo] = addScan(slamlAlg, scans{i});
if isScanAccepted
fprintf('Added scan %d \n', 1i);
end

end

Added
Added
Added
Added
Added
Added
Added
Added
Added
Added

scan
scan
scan
scan
scan
scan
scan
scan
scan
scan

Lo~ b whNRE

10

Reconstruct the scene by plotting the scans and poses tracked by the slamAlg.

figure;
show(slamAlg);

title({'Map of the Environment', 'Pose Graph for Initial 1@ Scans'});

Map of the Environment
Pose Graph for Initial 10 Scans

i _ 5
Ao
N |\
Ll {
e o
A L
o

12

Observe the Effect of Loop Closures and the Optimization Process

Continue to add scans in a loop. Loop closures should be automatically detected as
the robot moves. Pose graph optimization 1s performed whenever a loop closure 1s
identified. The output optimization Info has a field, Is Performed, that indicates
when pose graph optimization occurs..

Plot the scans and poses whenever a loop closure 1s 1dentified and verify the results
visually. This plot shows overlaid scans and an optimized pose graph for the first
loop closure. A loop closure edge 1s added as a red link.

firstTimel(Detected = false;

figure;
for i=10:1length(scans)
[isScanAccepted, loopClosureInfo, optimizationInfo] = addScan(slamalg, scans{i});
if ~isScanAccepted
continue;
end
% visualize the first detected loop closure, if you want to see the
% complete map building process, remove the if condition below
if optimizationInfo.IsPerformed && ~firstTimelCDetected
show(slamAlg, ‘Poses', 'off');

hold on;
show(slamAlg.PoseGraph) ;
hold off;
firstTimelCDetected = true;
drawnow

end

end
title('First loop closure');

First loop closure

&

Ehe . \

i

Visualize the Constructed Map and Trajectory of the Robot

Plot the final built map after all scans are added to the slamAlg object. The
previous for loop should have added all the scans despite only plotting the 1nitial
loop closure.

figure

show(slamAlg);
title({'Final Built Map of the Environment', 'Trajectory of the Robot'});

Final Built Map of the Environment
Trajectory of the Robot

10 f — -

-12 . .

Visually Inspect the Built Map Compared to the Original Floor Plan

An image of the scans and pose graph 1s overlaid on the original floorplan. You
can see that the map matches the original floor plan well after adding all the scans
and optimizing the pose graph.

Build Occupancy Grid Map

The optimized scans and poses can be used to generate a occupancyMap, which
represents the environment as a probabilistic occupancy grid.

[scans, optimizedPoses] = scansAndPoses(slamAlg);
map = buildMap(scans, optimizedPoses, mapResolution, maxLidarRange);

Visualize the occupancy grid map populated with the laser scans and the
optimized pose graph.

figure;

show(map) ;

hold on

show(slamAlg.PoseGraph, 'IDs', 'off');

hold off

title('Occupancy Grid Map Built Using Lidar SLAM');

Occupancy Grid Map Built Using Lidar SLAM

Y [meters)

10 5 0 5 10 15
X [meters]

CONCLUSION: After completion the experiment, students are able implement
Simultaneous Localization and Mapping (SLAM) with LIDAR Scans

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NO.: 4

NAME OF THE EXPERIMENT: Localize TurtleBot Using Monte Carlo
Localization.

OBJECTIVE: To Localize TurtleBot Using Monte Carlo 1.ocalization.

THEORY:

This example demonstrates an application of the Monte Carlo Localization (MCL)
algorithm on TurtleBot® 1n simulated Gazebo® environment.

Monte Carlo Localization (MCL) 1s an algorithm to localize a robot using a
particle filter. The algorithm requires a known map and the task is to estimate the
pose (position and orientation) of the robot within the map based on the motion
and sensing of the robot. The algorithm starts with an 1nitial belief of the robot
pose's probability distribution, which i1s represented by particles distributed
according to such belief. These particles are propagated following the robot's
motion model each time the robot's pose changes. Upon receiving new sensor
readings, each particle will evaluate its accuracy by checking how likely it would
receive such sensor readings at its current pose. Next the algorithm will redistribute
(resample) particles to bias particles that are more accurate. Keep iterating these
moving, sensing and re sampling steps, and all particles should converge to a
single cluster near the true pose of robot if localization is successful.

Adaptive Monte Carlo Localization (AMCL) is the variant of MCL implemented
in monteCarloLocalization. AMCI. dynamically adjusts the number of particles
based on KL-distance [1] to ensure that the particle distribution converge to the
true distribution of robot state based on all past sensor and motion measurements
with high probability.

The current MATLAB® AMCL implementation can be applied to any differential
drive robot equipped with a range finder.

The Gazebo TurtleBot simulation must be running for this example to work.

Prerequisites: Get Started with Gazebo and a Simulated TurtleBot (ROS Toolbox),
Access the tf Transformation Tree in ROS (ROS Toolbox), Exchange Data with
ROS Publishers and Subscribers (ROS Toolbox).

Note: Starting in R2016b, instead of using the step method to perform the
operation defined by the System object, you can call the object with arguments, as
if 1t were a function. For example, y = step(oby,x) and y = obj(x) perform
equivalent operations.

Connect to the TurtleBot in Gazebo

First, spawn a simulated TurtleBot mside an office environment in a virtual
machine by following steps in the Get Started with Gazebo and a Simulated
TurtleBot (ROS Toolbox) to launch the Gazebo Office World from the desktop, as
shown below.

Activities

B o o ¢ N

Gazebo o Gazebo Ubuntu_
Differential 2 Warehouse and_ROS_
: Drive Ro... simulator RobotWi... licenses. ...

Gazebo ROS Bridge
Recycling
world

Gazebo

Recycling
World-D...

v &
Gazebo b‘ ROS

LBR Melodic
Simulator Ga;ebo Al
Sign

F:::[E:Er e o

&

Gazebo
Warehouse
Robot

In your MATLAB 1instance on the host computer, run the following commands to
initialize ROS global node in MATLAB and connect to the ROS master in the
virtual machine through its [P address ipaddress. Replace ipaddress with the [P
address of your TurtleBot in virtual machine.

ipaddress = '192.168.2.158';
rosinit(ipaddress,11311);

The layout of simulated office environment:

Load the Map of the Simulation World

Load a binary occupancy grid of the office environment in Gazebo. The map is
generated by driving TurtleBot inside the office environment. The map is
constructed using range-bearing readings from Kinect® and ground truth poses
from gazebo/model_states topic.

load officemap.mat
show(map)

Binary Occupancy Grid
I

Y [meters]
N
e

X [meters)

Setup the Laser Sensor Model and TurtleBot Motion Model:

TurtleBot can be modeled as a differential drive robot and its motion can be
estimated using odometry data. The Noise property defines the uncertainty in
robot's rotational and linear motion. Increasing the odometryModel Noise property
will allow more spread when propagating particles using odometry measurements.
Refer to odometry Motion Model for property details.

odometryModel = odometrytotionModel;
odometryModel .Noise = [0.2 0.2 0.2 0.2];

The sensor on TurtleBot 1s a simulated range finder converted from Kinect
readings. The likelthood field method 1s used to compute the probability of
perceiving a set of measurements by comparing the end points of the range finder
measurements to the occupancy map. If the end points match the occupied points
in occupancy map, the probability of perceiving such measurements is high. The
sensor model should be tuned to match the actual sensor property to achieve better
test results. The property SensorLimits defines the minimum and maximum range
of sensor readings. The property Map defines the occupancy map used for
computing likelihood field. Please refer to likelihoodFieldSensorModel for
property details.

rangeFinderModel = likelihoodFieldSensortodel;

rangeFinderModel.SensorLimits = [©.45 8];
rangefFindertModel .Map = map;

Set rangeFinderModel.SensorPose to the coordinate transform of the fixed camera
with respect to the robot base. This is used to transform the laser readings from
camera frame to the base frame of TurtleBot. Please refer to Access the tf
Transformation Tree mm ROS (ROS Toolbox) for details on coordinate
transformations.

Note that currently SensorModel 1s only compatible with sensors that are fixed on
the robot's frame, which means the sensor transform 1is constant.

% Query the Transformation Tree (tf tree) in ROS.

tftree = rostf;
waitForTransform(tftree, ' /base_link",'/base_scan');
sensorTransftorm = getTransform(tftree,'/base link', '/base _scan');

% Get the euler rotation angles.
laserQuat = [sensorTransform.Transform.Rotation.W
sensorTransform. Transform.Rotation.X ...
sensorTransform. Transform.Rotation.Y sensorTransform.Transform.Rotation.Z];
laserRotation = quat2eul{laserQuat, 'ZYX');

% Setup the |SensorPose|, which includes the translation along base_link's
% +X, +Y direction in meters and rotation angle along base link's +Z axis
% in radians.
rangeFindertodel .SensorPose = ...
[sensorTransform.Transform. Translation.X sensorTransform.Transform.Translation.Y
laserRotation{1)];

Receiving Sensor Measurements and Sending Velocity Commands

Create ROS subscribers for retrieving sensor and odometry measurements from
TurtleBot.

laserSub = rossubscriber({’'/scan’);
odomSub = rossubscriber(’/odom');

Create ROS publisher for sending out velocity commands to TurtleBot. TurtleBot
subscribes to '/mobile base/commands/velocity' for velocity commands.

[velPub,velMsg] = ...
rospublisher(’ /cmd_vel', geometry_msgs/Twist');

Initialize AMCL Object

Instantiate an AMCL object amcl. See monteCarloLocalization for more
information on the class.

amcl = monteCarlolocalization;
amcl.UselidarScan = true;

Assign the MotionModel and SensorModel properties in the amcl object.

amcl.MotionModel
amcl.Sensortodel

odometryModel ;
rangeFinderModel ;

I

The particle filter only updates the particles when the robot's movement exceeds
the UpdateThresholds, which defines minimum displacement 1n [x, y, yaw] to
trigger filter update. This prevents too frequent updates due te sensor noise.
Particle resampling happens after the amcl.Resamplinglnterval filter updates.
Using larger numbers leads to slower particle depletion at the price of slower
particle convergence as well.

amcl.UpdateThresholds = [©.2,0.2,0.2];
amcl.ResamplingInterval = 1;

Configure AMCL Object for Localization with Initial Pose Estimate.

amcl.ParticleLimits defines the lower and upper bound on the number of particles
that will be generated during the resampling process. Allowing more particles to be
generated may improve the chance of converging to the true robot pose, but has an
impact on computation speed and particles may take longer time or even fail to
converge. Please refer to the 'KIL-D Sampling' section in [1] for computing a
reasonable bound value on the number of particles. Note that global localization
may need significantly more particles compared to localization with an initial pose
estimate. If the robot knows its initial pose with some uncertainty, such additional
information can help AMCL localize robots faster with a less number of particles,
1.e. you can use a smaller value of upper bound in amel.ParticleL.imits.

Now set amcl.GlobalLocalization to false and provide an estimated initial pose to
AMCL. By doing so, AMCL holds the initial belief that robot's true pose follows a
Gaussian distribution with a mean equal to amcl.InitialPose and a covariance
matrix equal to amcl.InitialCovariance. Initial pose estimate should be obtained
according to your setup. This example helper retrieves the robot's current true pose
from Gazebo.

Please refer to section Configure AMCL object for global localization for an
example on using global localization.

amcl.Particlelimits = [500 5000];
amcl.Globallocalization = false;

amcl.InitialPose = ExampleHelperAMCLGazeboTruePose;
amcl.InitialCovariance = eye(3)*0.5;

Setup Helper for Visualization and Driving TurtleBot.

Setup ExampleHelperAMCI. Visualization to plot the map and update robot's
estimated pose, particles, and laser scan readings on the map.

visualizationHelper = ExampleHelperAMCLVisualization(map);

Binary Occupancy Grid
- T 1
4
3
2 |
[45] ' | [4 _
% 2 L |
E
> 1 -
D 3
sl :
-2 ¥
-6 -4 -2 0 2 4 6
X [meters]

Robot motion 1s essential for the AMCI. algorithm. In this example, we drive
TurtleBot randomly using the ExampleHelperAMCIL Wanderer class, which drives
the robot inside the environment while avoiding obstacles using the controller VFH
class.

wanderHelper = ...
ExampleHelperAMCLWanderer(laserSub, sensorTransform, velPub, velMsg);

Localization Procedure

The AMCL algorithm 1s updated with odometry and sensor readings at each time
step when the robot 1s moving around. Please allow a few seconds before particles
are initialized and plotted in the figure. In this example we will run numUpdates

AMCL updates. If the robot doesn't converge to the correct robot pose, consider
using a larger numUpdates.

numUpdates = 60;

i=8;

while i < numUpdates
% Receive laser scan and odometry message.
scanMsg = receive(laserSub);
odompose = odomSub.LatestMessage;

% Create lidarScan object to pass to the AMCL object.
scan = lidarScan(scanMsg);

% For sensors that are mounted upside down, you need to reverse the
% order of scan angle readings using ‘flip' function.

% Compute robot's pose [x,v,vaw] from odometry message.
odomQuat = [odompose.Pose.Pose.0Orientation.W, odompose.Pose.Pose.Orientation.X,

odompose.Pose.Pose.Orientation.¥, odompose.Pose.Pose.Orientation.Z];
odomRotation = quat2eul (odomQuat);
pose = [odompose.Pose.Pose.Position.X, odompose.Pose.Pose.Position.Y
odomRotation(1)];

% Update estimated robot's pose and covariance using new odometry and
% sensor readings.
[isUpdated,estimatedPose, estimatedCovariance] = amcl{pose, scan);

% Drive robot to next pose.
wander(wanderHelper);

% Plot the robot's estimated pose, particles and laser scans on the map.
if isUpdated

Tl

plotStep(visualizationHelper, amcl, estimatedPose, scan, i)
end

end

AMCL update =60

. F K

Y [meters]

X [meters]

Stop the TurtleBot and Shutdown ROS in MATLAB

stop{wanderHelper);
ross hutdown

Sample Results for AMCL Localization with Initial Pose Estimate

AMCL iz a probabilistic algorithm, the simulation result on your computer may be
slightly different from the sample run shown here.

After first AMCL update, particles are generated by sampling Gaussian
distribution with mean equal to amcl.InitialPose and covariance equal to

amcl.InitialCovariance.

AMCLlupdate=l1

X [meters]

After § updates, the particles start converging to areas with higher likelihood:

: AMCL Iupdate = .E ; .

. 1
4_
l—|3_ i
5 5 ppe—
Z |
£ L
S -
D_ "
.ﬁ >
o £y . ,
_Z-I : | |
-6 -4 -2 1] 2 4 &
X [meters]

After 60 updates, all particles should converge to the correct robot pose and the
laser scans should closely align with the map outlines.

: AMCL Lljpdate = IE-I}

o 1
4
5
o
o9 e h—
L |
v | i
0
"
a 7Y . ,
o . .
5 -4 - 1} 2 4 5
X [meters]

Configure AMCL Object for Global Localization.

In case no initial robot pose estimate 15 available, AMCL will try to localize robot
without knowing the robot's initial position. The algorithm initially assumes that
the robot has equal probability in being anywhere in the office's free space and
generates uniformly distributed particles inside such space. Thus Global
localization requires significantly more particles compared to localization with
initial pose estimate.

To enable AMCL global localization feature, replace the code sections in
Configure AMCL object for localization with imifial pose estimate with the code in

this section.

amcl.Globallocalization = true;

ancl.Particlelimits = [586 56668);

Sample Results for AMCL Global Localization

AMCL is a probabilistic algorithm, the ssmulation result on your computer may be
slightly different from the sample run shown here.

After first AMCL update, particles are uniformly distributed inside the free office
space;

Y [meters]

X [meters]

After 8 updates, the parficles start converging to areas with higher likelihood:

AMCLlupdate = .B

| TT—— . E— L
5 b |
a4 T e s Yesns. WP QT
'}: & - * = 'r E :." ‘.f - --i:.r.‘-

3_ :-. =
) ' |
d . =
e 2 i | [+
fab]

z , S |
SkE P S 7).
- I A AF

| A T ., 5 T O Lt : L

] 7 TR 3 CrT O

-1 1 0 . :'--r > -

_z-l I' 1] — 1 1 1 "

5 4 2 0 2 4 8
X [meters]

After 60 updates, all particles should converge to the correct robot pose and the
laser zcans should closely align with the map outlines.

: AMCL IIJijatE = gll.'lI

i i
5 Lo i
:I_ =
ol
L I_ —_—
Jail]
~ L waf
D -
& j
Ty E =
1 1 1]] 1 1
i - 2 a 2 4 5
X [meters|

CONCLUSION: After completion the experiment, students are able to understand
how to localize TurtleB ot Using Monte Carlo Localization.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NQO.: 5

NAME OF THE EXPERIMENT: Estimate Position and Onentation of a Ground
Vehicle.

OBJECTIVE: To Estimate Position and Orientation of a Ground Vehicle.

THEORY:

This example shows how to estimate the position and orientation of ground
vehicles by fusing data from an inertial measurement unit (IMU) and a global
positioning system (GPS) receiver.

SIMULATION SETUP:

Set the sampling rates. In a typical system, the accelerometer and gyroscope in the
IMU run at relatively high sample rates. The complexity of processing data from
those sensors in the fusion algorithm 1s relatively low. Conversely, the GPS runs at
a relatively low sample rate and the complexity associated with processing it is
high. In this fusion algorithm the GPS samples are processed at a low rate, and the
accelerometer and gyroscope samples are processed together at the same high rate.

To simulate this configuration, the IMU (accelerometer and gyroscope) 1s sampled
at 100 Hz, and the GPS 1s sampled at 10 Hz.

imuFs
gpsFs

100;
10;

% Define where on the Earth this simulation takes place using latitude,
% longitude, and altitude (LLA) coordinates.
localOrigin = [42.2825 -71.343 53.0352];

% Validate that the |gpsFs| divides |imuFs|. This allows the sensor sample
% rates to be simulated using a nested for loop without complex sample rate
% matching.

imuSamplesPerGPS = (imuFs/gpsFs);
assert(imuSamplesPerGPS == fix(imuSamplesPerGPS), ...
'GPS sampling rate must be an integer factor of IMU sampling rate.');

FUSION FILTER:

Create the filter to fuse IMU + GPS measurements. The fusion filter uses an
extended Kalman filter to track orientation (as a quaternion), position, velocity,
and sensor biases.

The insfilterNonholonomic object that has two main methods: predict and fusegps.
The predict method takes the accelerometer and gyroscope samples from the IMU
as input. Call the predict method each time the aceelerometer and gyroscope are
sampled. This method predicts the states forward one time step based on the
accelerometer and gyroscope. The error covariance of the extended Kalman filter 1s
updated in this step.

The fusegps method takes the GPS samples as input. This method updates the filter
states based on the GPS sample by computing a Kalman gain that weights the
various sensor inputs according to their uncertainty. An error covariance 1s also
updated in this step, this time using the Kalman gain as well.

The insfilterNonholonomic object has two main properties: IMUSampleRate and
DecimationFactor. The ground wehicle has two velocity constraints that assume it
does not bounce off the ground or slide on the ground. These constraints are
applied using the extended Kalman filter update equations. These updates are
applied to the filter states at a rate of IMUSampleRate/Decimationlactor Hz.
gndFusion = insfilterNonholonomic{ ' ReferenceFrame', 'ENU*, ...

*IMUSampleRate’, imuFs, ...

'ReferenceLocation’, localOrigin, ...
‘DecimationFactor', 2);

Create Ground Vehicle Trajectory

The waypoint Trajectory object calculates pose based on specified sampling rate,
waypoints, times of arrival, and orientation. Specify the parameters of a circular
trajectory for the ground vehicle.

% Trajectory parameters

r=8.42; % (m)

speed = 2.50; % (m/s)
center = [@, @]; % (m)

initialYaw = 90; % (degrees)
numRevs = 2;

% Define angles theta and corresponding times of arrival t.
reviime = 2*pi*r / speed;

theta = (@:pi/2:2*pi*numRevs)."';

t = linspace{(@, revTime*numRevs, numel(theta)).’;

% Define position.

X = r .* cos(theta) + center(l);
y = r .* sin{theta) + center(2);
Z = zeros(size(x));

position = [x, vy, Z];

% Define orientation.

yaw = theta + deg2rad(initialYaw);

yaw = mod(yaw, 2*pi);

pitch = zeros(size(vaw));

roll = zeros(size(yaw));

orientation = quaternion([yaw, pitch, roll], ‘euler’,
'ZYX', 'frame');

% Generate trajectory.

groundTruth = waypointTrajectory('SampleRate’', imuFs,
'Waypoints', position,
'‘TimeOfArrival', t,
‘Orientation’', orientation);

% Initialize the random number generator used to simulate sensor noise.
rng{ ' default’);

GPS Receiver:

Set up the GPS at the specified sample rate and reference location. The other
parameters control the nature of the noise in the output signal.

gps = gpsSensor('UpdateRate’', gpsFs, 'ReferenceFrame’, 'ENU');
gps.Referencelocation = localOrigin;

gps.DecayFactor = 0.5; % Random walk noise parameter
gps.HorizontalPositionAccuracy = 1.0;
gps.VerticalPositionAccuracy = 1.0;

gps.VelocityAccuracy = 8.1;

IMU Sensors:

Typically, ground vehicles use a 6-axis IMU sensor for pose estimation. To model
an IMU sensor, define an IMU sensor model containing an accelerometer and
gvroscope. In a real-world application, the two sensors could come from a single

integrated circuit or separate ones. The property values set here are typieal for low-
cost MEMS sensors.

imu = imuSensor('accel-gyro',
‘ReferenceFrame’, "ENU', *SampleRate’, imuFs);

% Accelerometer
imu.Accelerometer.MeasurementRange = 19.6133;
imu.Accelerometer.Resolution = ©.0023928;
imu.Accelerometer.NoiseDensity = ©.0012356;

% Gyroscope

imu.Gyroscope.MeasurementRange = dep2rad(250);
imu.Gyroscope.Resolution = deg2rad(@.0625);
imu.Gyroscope.NoiseDensity = deg2rad(©.025);

Initialize the States of the insfilterNonholonomic:

The states are:

States Units Index
Orientation (quaternion parts) 1:4
Gyroscope Bias (XYZ) rad/s 5.7
Position (NED) m 8:10
Velocity (MNED) m/s 11:13
Accelerometer Bias (XYZ) m/s"2 14:16

Ground truth is used to help mitialize the filter states, so the filter converges to
good answers quickly.

% Get the initial ground truth pose from the first sample of the trajectory
% and release the ground truth trajectory to ensure the first sample is not
% skipped during simulation.

[initialPos, initialAtt, dinitialVel] = groundTruth();

reset (groundTruth);

% Initialize the states of the filter
gndFusion.State(1:4) = compact(initialAtt).’;
gndFusion.State(5:7) = imu.Gyroscope.ConstantBias;
gndFusion.State(8:10) = initialPos.';
gndFusion.State(11:13) = initialvel.';
gndFusion.State(14:16) = imu.Accelerometer.ConstantBias;

Initialize the Variances of the insfilterNonholonomic

The measurement noises describe how much noise 1s corrupting the GPS reading
based on the GPS Sensor parameters and how much uncertainty i1s in the vehicle
dynamic model.

The process noises describe how well the filter equations describe the state
evolution. Process noises are determined empirically using parameter sweeping (o
jointly optimize position and orientation estimates from the filter.

% Measurement noises
Rvel = pps.VelocityAccuracy.”2;
Rpos = gps.HorizontalPositionAccuracy.”2;

% The dynamic model of the ground vehicle for this filter assumes there is
% no side slip or skid during movement. This means that the velocity is

% constrained to only the forward body axis. The other two velocity axis
% readings are corrected with a zero measurement weighted by the

% |ZerovelocityConstraintNoise| parameter.
gndFusion.ZeroVelocityConstraintNoise = le-2;

% Process noises
gndFusion.GyroscopeNoise = 4de-6;
gndFusion.GyroscopeBiasNoise = 4e-14;
gndFusion.Accelerometerloise = 4.8e-2;
gndFusion.AccelerometerBiasNoise = de-14;

% Initial error covariance
gndFusion.StateCovariance = le-9*ones(16);

Initialize Scopes:

The HelperScrollingPlotter scope enables plotting of variables over time. It is used
here to track errors in pose. The HelperPoseViewer scope allows 3-D visualization
of the filter estimate and ground truth pose. The scopes can slow the simulation. To
disable a scope, set the corresponding logical variable to false.

if useErrScope
errscope = HelperScrollingPlotter(...
‘NumInputs', 4,
'TimeSpan', 10,

‘SampleRate’, imuFs,
‘YLabel', {'degrees’,
‘meters', ...
‘meters', ...

‘meters'},

'Title', {'Quaternion Distance’,
*Position X Error’,
‘Position Y Error’,
‘Position Z Error'}, ...
‘YLimits',

[-1, 1

i P

k. |

-1, 1])5

end

if usePoseView
viewer = HelperPoseViewer(...
'XPositionLimits', [-15, 15],
"YPositionLimits', [-15, 15],
'ZPositionLimits', [-5, 5],
‘ReferenceFrame’, 'ENU');
end

Simulation Loop:
The main simulation loop 1s a while loop with a nested for loop. The while loop

executes at the gpsFs, which is the GPS measurement rate. The nested for loop
executes at the imuF's, which 1s the IMU sample rate. The scopes are updated at the
IMU sample rate.

totalSimTime = 3@; % seconds

% Log data for final metric computation.

numsamples = floor(min(t(end), totalSimTime) * gpsFs);
truePosition = zeros(numsamples,3);

trueOrientation = quaternion.zeros(numsamples,1);
estPosition = zeros(numsamples,3};

estOrientation = quaternion.zeros(numsamples,1);

idx =g

for sampleldx = 1:numsamples
% Predict loop at IMU update frequency.
for i = 1:imuSamplesPerGPS
if ~isDone(groundTruth)

end

end

end

idx = idx + 1;

% Simulate the IMU data from the current pose.

[truePosition(idx,:), trueOrientation(idx,:),
truevel, trueAcc, trueAngVel] = groundTruth();

[accelData, gyroData] = imu(trueAcc, truelAngvel,
trueOrientation(idx,:));

% Use the predict method to estimate the filter state based
% on the accelData and gyroData arrays.
predict(gndFusion, accelData, gyroData);

% Log the estimated orientation and position.
[estPosition(idx,:), estOrientation(idx,:)] = pose(gndFusicn);

7% Compute the errors and plot.
if useErrScope
orientErr = rad2deg(...
dist(estOrientation(idx,:), truedrientation(idx,:)));
poskErr = estPosition(idx,:) - ‘truePosition(idx,:);
errscope(orientErr, poskErr(1), posErr(2), postrr(3));
end

% Update the pose viewer.
if usePoseView
viewer(estPosition(idx,:), estOrientation(idx,:), ...
truePosition(idx,:), estOrientation(idx,:));
end

if ~isDone(groundTruth)

end

% This next step happens at the GPS sample rate.
% Simulate the GPS output based on the current pose.

[11a, gpsvel] = gps(truePosition(idx,:), trueVel);

% Update the filter states based on the GPS data.
fusepps(gndFusion, 1la, Rpos, gpsVel, Rvel);

B
& OF - T
]
£
_1 1 i i 1 1 1 i i 1
20 21 22 23 24 25 26 27 28 28
Time (s}
' Position X Error
80— ST —
E
_1 i 1 1 1 1 1 i i i
20 21 22 23 24 25 26 27 28 9
Time (5}
; Position Y Error
i
%0 = = T —
E = ——
A T) |_H_HF I I I i i I
20 21 22 23 24 25 26 27 28 28
Time {5}
; Position £ Error
S0 :
E
_1 i i i i 1 i i i i
20 21 22 23 24 25 26 27 28 blats
Time (s)
Orientation « Ground Truth
8.
Position [meters) .
—_ f o
Pl
-2 = i
A //"')
"L_“‘
0 o
9 y(Nathy 22y (Eau)
& i
- =
““\..,_x B et DOrientation - Estimated
-0 il =10
o ‘\ 2 2.
’ 10 10 =
¥ Mortn) % (Ezst) R
]
o Pre
s J,/ 2
i BN

Quatermnion Distance

g (Mrth) P » {Easl)

Error Metric Computation:

Position and orientation were logged throughout the simulation. Now compute an

end-to-end root mean squared error for both position and orientation.
posd = estPosition - truePosition;

% For orientation, quaternion distance is a much better alternative to
% subtracting Euler angles, which have discontinuities. The quaternion
% distance can be computed with the |dist| function, which gives the
% angular difference in orientation in radians. Convert to degrees for
% display in the command window.

quatd = rad2deg(dist(estOrientation, truedrientation));

% Display RMS errors in the command window.

fprintf('\n\nEnd-to-End Simulation Position RMS Errorin‘);

msep = sqrt(mean(posd.*2));

fprintf('\tX: %.2f , Y: %.2f, Z: %.2f (meters)\n\n', msep(l),
msep(2), msep(3));

fprintf{ ' End-to-End Quaternion Distance RMS Error (degrees) \n");
fprintf ("\t%.2f (degrees)\n\n’, sqrt(mean(quatd.”2)));

End-to-End Simulation Position RMS Error
X: 1.16 , ¥Y: 0.99, Z: 0.03 (meters)
End-to-End Quaternion Distance RMS Error (degrees)
@.09 (degrees)

CONCLUSION: After completion the experiment, students are able to understand
how to estimate the Position and Orientation of a Ground Vehicle.

Courtesy: https://in. mathworks.com/& Goagle

