Exp name: Blinking a LED with the help of 8051
Objective:i) To use GPIO of 8051 as output port
ii)To produce some arbitrary amount of delay

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: As the LED is connected with port 1- line 0, this particular pin of 8051 is made logic
‘1’ and logic ‘0’ alternately with some amount of delay in between. For this particular program the
delay produced is arbitrary

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2)
the reset circuit connection {please correlate with the associated theory)

whls C1 o2 T
T 30pF =T 20§k
i U1

_|DI SESN T P (22

RO 1D

12vHz & PO 2800
¥TAL2 PO 30 ﬁ

Pl a4

(=T
S : e
it RST P TAALT ==
AL+ e I
Ri Faapa 2
i 29 L
b L P23 e
S ALE P24 =
= F25013 %

F2 G

= P27 |
i o -

i PAORAT

I T mm 1T

Pi2 2T
=2 R

M F3.4T0
D1 ;I F15 g;a.sm %

P16 PEREE
e e F3.770 =

R2 M—

1
Program:

#include<ATE9X5E2.h>
voiddelaymsiunsigned intms) ;
shit LED = P1°0;
vold main()
{

// Infinity loop to continue LED Blink

while (1)
1
LRER = [
delay ms (2000) ;
B LED = 1:

delay ms{2000) ;

1

}
voiddelay ms{unsigned intms)

Exp name: Control the LED by a switch
Objective: i)To use the GPIO as input port

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: Here the switch {button type)} is connected with port 1-linel which is configured to
work as input port and the LED to be controlled is connected with port 2-linel which is configured as
output port. With the pattern the switch is connected as shown in the circuit{note one can have
opposite connection also), when switch is pressed the input line pl.1 gets logic ‘0 otherwise it
remains at logic ‘1’. This line status is read by the controller and the LED line {the output line) is
made logic ‘0" or ‘1’ accordingly (here what is made for what is notimportant, what is important is
whether we can control the LED as desired according to the input line status or not).

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2)
the reset circuit connection {please correlate with the associated theory)

5l

A2
[~ 20pF [~ dpF

It
C
i

IE

Fi
ik

REREEE BERRHGE [ERLEL

o b b
w

=

Program:

#include<reghl Jh>

sbit Led = P221; //pin connected to toggle Led
gbit Switch =P1°1; '/Pin connected to toggle led
int main()
1
Led =20; //configuring as output pin
Switch = 1; //Configuring as input pin
while{l) //Continuous monitor the status of the switch.

Led =1; //Led Cn

Exp name: Trying to execute multiple tasks without interrupt
Objective: i)To understand the need of interrupt.

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle:Here we implement two tasks: one is to read switch status and to reflect it to the
LED{both are connected to port 1 as shown in the circuit). Another task is to make port 2 on and off
alternately with some delay. As can be understood from the program that the controller executes
these two tasks in a sequential manner i.e first complete one then next.

Let us consider that it is currently executing the second task. With some considerable amount of
delay, controller will be busy with this task. If in the mean time one presses the switch, controller
will miss it as it is busy with second task.

This is the problem in executing multiple tasks in a sequential manner,

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2)
the reset circuit connection {please correlate with the associated theory)

Loy sz 7
T ot T Wer
1 . i
h =]
—{0l T e
=l Bl ol St ﬁ
B0 k0L ﬁ
For (T
3 s Jog =
il raneg f=ad
i (i
G{mm e, =y
T s
e 2t [
F2 Eal]
1 t .
= 73
i

Program:

#include<AT39X52.h>
volddelay ms{unsigned intms):
skit Led = F170;

sbit Switeh =pP171:

vold main{)

1

unsignedinti,j;
Led[=0 //configuring as output pin
Switeh = 1; //Configuring as input pin

while(l) //Continuous monitor the status of the switch.

I
1

//taskl
if({Switch == Q)
{ Led =~Led;]

J/task 2
Po=lixtl;
Semdial; 080 00
for =0 J=l0b3++) ;
P2=0x00;
for(i=0;1<1000;i++)
for (j=0:3<100;J+4) ;

}
}

Exp name: To execute multiple tasks with interrupt
Objective: i)To understand the need of interrupt.

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: As with the previous experiment, here we again implement two tasks: one is to
read switch status and to reflect it to the LED{both are connected to port 1 as shown in the circuit).
Another task is to make port 2 on and off alternately with some delay. But now, the switch is
connected in such a manner that if itis pressed, the controller will be interrupted and so the task 1is
xecuted once it is interrupted irrespective of current execution status of the controller. Thus even if
it was busy in executing the second task, whenever the switch is pressed then and then the
controller will be interrupted and will come out for a moment from second ask and executes the first
task and go back again to execute the second task. Thus there is no chance of missing any task
thereby implementing multi tasking.

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2}
the reset circuit connection {please correlate with the associated theory)

J'_‘
t sz T
e ApF

IL
L
%)
L

o1

é
TR FRE TR

&ww{ L*
:

g
i
H

FIT FITD R3
e Haf

Program:

#include<AT89X52.h>
volddelay msd{unsigned intms);
skit Led ="P170;

gkit Switeh»=P1"1;

vold main{)

1

unsigredinti,j;

Led/ =(0; //configuring as output pin
Switeh = 1; //Configuring as input pin
TE=0x81; // Enable INTO
LTTO0=1:

while(l) //Continucus monitor the status of the switch.
1
fitask 2

FE=UniE
o= ST
Fom F=Te IO 0 5
 P2=0x00; '
for(i=0;1i<1000;1i++)
for =0 J=l0by3++) ;

}
vold ISR ex0(void) interrupt 0O
interrupt INTO
{
Led =~Led;
I

Exp name: Blinking a LED with 8051 timer to produce delay
Objective: ii)How to produce a predefind amount of delay using timers

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: As the LED is connected with port 1- line 0, this particular pin of 8051 is made logic
‘1’ and logic ‘0’ alternately with some amount of delay in between. For this particular program the
delay produced is not arbitrary, rather it is well defined. As given in the program, the timer O is used
in mode 1 to produce 100 us delay, which is repeated for 1000 times to produce an overall 1 second
delay.

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2)
the reset circuit connection {please correlate with the associated theory)

s C1 L C2
[30pF =T 30pF

X U

L

IvHz 15

1%
w

RET

-,.,__
+

n
N
=

2 715

PO
P3. 14D
P35 270
P33T
Faam
FIET]
P2
F3.7R0

Program:

// Use of Timer mode 1 for blinking LED using polling method

// ATAL freguency 11.0592MHz

#include<reghl.h>

abit led = P170; /¢ LED connected to lst pin of
porty F1

void delayv () ;

main{)
1
unsignedinti;
while (1)
{
led=~1led; // Toggle LED

Feow =0 11000 s i 4t}

delawl]): 2 Gall delay

i
}
vold delay () // Delay generation using Tdmer 0 mode 1
{

TMAD = Gx0l; // Model of Timer0

THE= OREC // FCe6 evaluated Nex value

for 1Imillisecond delay
T = BXE6:

TRE = 13 L Btart @i
while (TFO == 0); // Using ‘polldng method
TR = 103 // Stop Timekx

RO = T, L4 Clear Ehpa

Exp name: Blinking a LED with 8051 timer to produce delay in interrupt mode

Objective: ii)How to produce a predefind amount of delay using timers in interrput mode thereby
multitasking.

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: As the LED is connected with port 1- line 0, this particular pin of 8051 is made logic
‘1’ and logic ‘0" alternately with some amount of delay in between. For this particular program the
delay produced is not arbitrary, rather it is well defined. As given in the program, the timer O is used
in mode 1 to produce 1ms delay, which is repeated for 1000 times to produce an overall 1 second
delay. Please note that whether the timer has finished its counting or not, is not being observed here
by the controller as opposed to the previous project. Here, once the counting is complete by the
timer, it is made known to the controller by interrupting it thereby controller can do other jobs as it
does not need to seat and onserve.

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2)
the reset circuit connection {please correlate with the associated theory)

Lo c wlecz T
=T zopF S
2 U1
| 45 —
(AL Pu%uem
lD| PO A0 ﬁ
IvH P 2JACT
i Al B _Hn',am.%
T
fan: EESMDG —gg-
& \I ; = Bl FiADT |22
Z{UF + 2 T 21
Jnei] TR
R1 P2 108 =
1k _ F22410
PR (e
a5 ;%E F2 4812
i F2amATd
- y F2EANM -!T:
E P2 7is =2t
(F10 EOmAD
= P11 Pas0 ﬁ
e Fa T
s (504 {:3_4:113'_13
——lpis FaET]
o {15 3 BIWE
R2 LED — P17 FA.7 T i
ATESEST
10k
Program:

#dmclude <regSl.h>

gkit LED = P1°0;
longinti

.
r

vold main{)

TMOD = 0x01; // Model of Timer0O
THO= 0xFC; // FC66 evaluated hex value for 1millisa€end
TLE = Ukt
TE-fwta,;
TRO=1:

while (1)
_{
.

}

vgid timer0 (} lﬁt@rzupt | L

{
TRO=0; ®
i4+;
iE =000 (LEB==1LEDy d=bg%
THO= 0xFC; // FC66 evaluated he

b’b’
@0

Q

Exp name:Blinking a LED with 8051 timer to produce delay in interrupt mode and mode?2

Objective: ii)How to produce a predefind amount of delay using timers in mode 2 and in interrput
mode thereby multitasking.

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: As the LED is connected with port 1- line 0, this particular pin of 8051 is made logic
‘1’ and logic ‘0’ alternately with some amount of delay in between. For this particular program the
delay produced is not arbitrary, rather it is well defined. As given in the program, the timer O is used
in mode 1 to produce 1ms delay, which is repeated for 1000 times to produce an overall 1 second
delay. Please note that whether the timer has finished its counting or not, is not being observed here
by the controller as opposed to the previcus project. Here, also like previous project, once the
counting is complete by the timer, it is made known to the controller by interrupting it thereby
controller can do other jobs as it does not need to seat and observe. The difference is that, here we
do not need to initialize the timer with its values everytime it overflows as it is done done
automatically. That is why, this mode of timer is normally used to produce a symmetric and
repeating amount of delay.

Circuit: The associated circuit is shown below. Twe more things to note: 1) the crystal connection 2)
the reset circuit connection {please correlate with the associated theory)

& U1

! DI L SeTal POMLO
m! Bl {7201
TeLA Bl 20z

RTALL PO A
. PO 44a04

PO &e0G
POESDE
PO LT

F2.0/%

F2 1548
F22610.
P23l
P42
FREm13
FREEIL
F2 7815

F3.0RD
P31TA0
P21
FRAIATT

Kbl bbb Bdd bl

Program:

#include <reg5l.h>

sbif LED = P1°0;
long int i;

vold main ()
{
T™MOD = 0x02; //Timer0 mode 2
THO=0xkE;
LRy
TRO=1;

while (1)
{
1

}

vold timer0({) interrupt 1 // Function to generate clock of
frequency 500KHZ using Timer 0 interrupt.

i

dat i

if (i==10000) {LED=~LED; i=0;1

}

;7 TMED = 0x0l;
// timer delay()
e
// THO=0xBD;:

// TLO=0x2F;

74 TRE=13

// while(TF0==0);
// TRO=0;TF0=0;
el 5

Exp name: Serial {UART) communication between two processors

Objective: i)To understand how serial {using UART) communication is implemented between two
processors.

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle:Here two processors, one is our controller 8051 and another is the computer itself
are used to test whether we can send data serially to and from the controller or not. As shown in
the picture, two lines {Tx and Rx) are used for this purpose. In practise, there may be one Rs232
cable in between if we need to connect two processors quite far apart which mainly changes the
voltage levels for the purpose of sending data to a long distance.

Here the transmitters and receivers in both sides are used in polling mode to detect whether the
previous data byte has been sent or one data byte has been successfully received. This is
implemented by polling the Tl and Rl bits respectively.

The communication is set up by initialising the number of data bits, number of stop bits, parity bit in
both the sides (it is to be same in both the sides) by setting the bits of SCON register. The speed is
set by initializing the timer (timer 1 in mode 2).

Here the whole process is tested by sending one byte from the computer which is received by the
controller {8051) , which again is resent by the controller to the computer. The computer upon
receiving the byte, displays it on the screen thereby testing the loop and successful communication.

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2)
the reset circuit connection {please correlate with the associated theory)

U2
e O PO [
POTADT —57 RHLDI
5 PO 2203 i
48 Loeqaia. PO 3403 [™D
Po4fA04 5
POSADS == RT3
POGIADE i E
el ST PO TIADT fiiie oTs
21
Pa e 2
R
-~ P2 2410 [t
-— FEEN P2.ami o
eI Py Foain =2
= F2 313 il
P2 /AT _EE
F2 7IANE fm——
;— Pl P8 0RO]D
—=Fi P3 1/THD [t
F12 PN T
; F13 PAATTTT _g
M A AT0
B il P3ATI =2
—ris PIERE —o
Sl P17 F3.7/R0 el

ATHICE]

Program:

#finclude<reghl.hx>

roldUARL Inadl)
{
SCON = 0x50; // Asynchrontdatous mode, 8-bia and(l-stop Bit
THMOE = Gxily JlARwesl. io Model.
TH1 = OxPd;
TR = A //Turn ON the timer for Baud rate generation
!

voldUART TxChar (char ch)
{

SRR = i3 £/ Tioad thé data to be tran@mil tid
WELTe A Rr==10% 3 // Walt till the data is trasmitted
IT = [//Clear the Tx flag for next cvcle.

}

charUART RxChar (void)
{

char 2
while (RI==0) ; /7 Wailt till the wata is, received
RTI=0; /4 Glear Rectu@d Tnterrupt Flag for naxt evele
x=SBUEF;
PECHETIR 3 // return the recgeived/ ¢har

1

putst (char s[])

{

TR

for d=0ss L] =014+
{

UART TxChar(s[i]): // Tramsmit predefined string
1

}

int main()
{
J4 char i,8[]={"¢@rne to 8051 Serigl Comm, Type the c¢har to be
aechoed: "}
charch;
UART Tnit ()% //Initialize the UART module with 9600 baud rate

A7 putst ("Welcome to 8051 Serial Comm, Type the char to

be echoed %) ;
while(l)

{
ch =di@m’ RxChar{); // Roceive a char from senial port
UARTiTxChgr(ch); £ Transmit the reesived shar

1
}

Exp name: Reading a matrix keyboard by 8051

Objective: i) To understand how we can connect and read a matrix keyboard by 8051

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: As shown in the circuit, the rows of the keyboardis driven to logic ‘0" one by one by
the controller and parallelly reading the status of the column lines in search of whether any of them
is at logic ‘0’ or not , thereby confirming the switch press and identifying the switch number. Here, in
the program we also used the earlier serial communication protocol to send the identified key to the
computer such that we can see and confirm the identified switch in the screen.

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2)

the reset circuit connection {please correlate with the associated theory)

Program:

CFRREREE FEERE

T,

A RiraLl PP
B (D

1 P Gl
i

Fil A6

3 P it
B P70
Faoeg

P1.120

Fa;-mm

P&l i |

i ﬂl?_‘ P2 AT
ER P2 S

3 P2 ity
PZrRas

o P ORED
5 L PIATED
i PAHT
[R P
Ala FLAT
Fid" FIAL

Pla PICAUE |
Flis F3 78T
g——————————

finclude<regblgli» //including sfr

controller

//Keypad Connecgtions

shit
shit
shit
shit
shit
shit
shit
shit

//End Keypad Connections

R1
R2
R3
R4
(5
(o
C3
c4

Pl s
R
Bl ;
BlES ;
P14 ;
Bl 45
=Rl
X .

VvoI1dUART Tnit|()

{

SCON =
TMOD

TH1
Tl

0x50;
Dx20;

OxFD;
1;

registers for ports of the

/¢ Asynchronous mode,
AATimerl in Made?2.

O

RMD
=D
RTS
(5]

8-kit data and l-stop bit

//Turn ON the timer for Baud rate generation

}

voldUART TxChar (char ch)
{

SBUF = ch; £ Lioad the data te be bransmitted
Wil e TL==0) 3 // Walt till the data is trasmitted
L = //Clear the Tx flag for next cvcle.

}

//char UART RxChar (void)

P

/Y BHaE %2

[WHITetBT==0} 3 // Walt till the datd is received
£ Bil={].: /7 Clear Receive Inter@upt Flag for next
cycle

/7 X=SBUF;

7 return (x) ; 7/ return the receiyedClELr

e

vold Delay(int a)

{

ink 93

AT

for (1=03 158 i 1++)
{
for (§=0;7<100; j++)
{
1

}

charRead Keypad()
{

@l=13

E22=13

C3=1;

Cd=1;

R1=0;

R2=1;

R3=1;

Ri=1;
1f(Cl==0){Delay(a0) ;while(Cl==0) ;return 'A';}
if(CZf Q) {Delay(50) ;while(C2==0) ;return '87;}
if(CBf:O){Delay(50);while(CSzzO);return ety
if(C4==0){Delay(50) ;while(C4==0) ;return '/';1}

Rl i

R2=05

R3=14

R4—l'

f({€1==0) {Delay(50) ;while(Cl==0);return '47%';}

(C2::O){Delay(50);while(C2::O);return e vzl

(C3—=O){Delay(50);while(63==0);return s Li g

N O){Delay(SO);while(C4==O);return Wkl

Rl

R4=1;
if(Cl==0){Delay(50);;while(Cl==0);return
1f(C2==0){Delay(50) ;while(C2==0) ;return
if(C3==0){Delay(50) ;while(C3==0) ;return
if({C4==0){Delay(50);;while(C4==0) ;return

Rl=1;

RZ2=1;

R3=1;

R4=0;
if(C1==0){Delay(50) ;while(Cl==0) ;return
if(C2==0){Delay(50);while(C2==0);return
if(C3==0){Delay(50);while(C3==0);return
if(C4==0){Delay(50) ;while(C4==0) ;return
return 0;

}

vold main ()
{

G iaE=te ol i o
UART Init();
while(l)

{
while[l{p = Read Kevpad()))y

UART TxChar(p):
e P2=p;
}

Exp name: Connecting an external parallel ADC with 8051

Objective: i) To understand how we can connect and drive an external ADC which is connected
parallely with the 8051

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: This is one example of how one can write a driver to drive any external IC, though
very small but useful. Here we write to drive IC ADCO808 by 8051. Writing a driver means basically
one need to follow the timing diagram and produce/generate the control signals accordingly
maintaining the timing diagram. Here also we have done the same thing{please follow the timing
diagram of the IC in its datasheet).

In addition to that, here again we have used the serial communication protocol for the purpose of
reflecting the read ADC vale into the computer terminal.

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2}
the reset circuit connection {please correlate with the associated theory)

U : L]
- A —ra
s
& E ;i
il i
PLE e F
FILIAD i
R 1n
1k 1 12 | FaLm
= cooigeded || | o]l 0 ummpe
sl o e RIT FITE407 s
mz -
% na Eo el
i
4
L 0T i
r s ot t e 03301
r oim H Ltz
e Ty
= o £ BEARL
) ot
=] T— + i1
o | | — F1ATin
12 G 24T
tL WRETE or -t 13 23 34HT
i 1410
PR #5 F15T1
HE EiE
1 FIImE
el

Program:

#include<regbl .h>

sbit ale=F2°3;

skitoe=P2"6;

sbitsgsF2"4;

sbitteog=P2"5;

shitelk=p2"7;

sbit "BEPA=P2"0; //Address pins for selecting input channels.
sbit ADDE=P2"1;

skhit ADDC=P2°2;

#define input portpPl //ADC
#define ocutput portP3 //ADC
unsigned char number;

vold timer({) interrupt 1 4/ Funetion to generate clock wi
frequency 5 KHZ using Timer 0 interrupt.

{

clk=~clk;

}

voildUART TInit()
{
SCON = 0x50; // Rsynchrontdatous mode, 8-kia and l-stop bit
THMOD = Ox20; //Timerl id Mode? .
TH1 = 0xFd;
TRl = 1; //Turn ON the timer for Baud rate generation
|
void delay(unsigned int count)
i
infed,
Ter (p=liveonnyifd)
e ol g =0 gm0 e]
}

voldread adc()

{

number=0;

ale=1;
sc=1;
delay (1) :
ale=0;
sc=0;
whileleog==1);
while{eoc==0);
oe=1;
number=input port;
delay (1) ;
oe=0;
}
veldade{inti) //FNEEEPn to drive ADC
{
Bwitehii)
{
case 0:
ADDC=0; // Selecting input channel INO using address lines
ADDB=0;
ADDA=0;
read adc();
breaks
casgl 14
ADDC=0; // Selecting input channel IN1 using address lines
ADDB=0;
BDDA=1 ;

Lead adc();

break;
case 2:
ADDC=0; // Selecting input channel IN2 using address lines

BOB=1.;
ADDA=0;
read adc();

break;
t
}

voldUART TxChar (char ch)
{

SHIE = ol £/ Load the data to be trangmiskt o6
W TE TI==8) § A/ Walt 111 the data is Trasn it e
IT = [//Clear the Tx flag for next cycle.

}

volid main ()
{

inti=0;
eoc=1;
ale=0;
oe=0;

sc=0;
clk=0;

UART Tnit();

THO=0xaF;
IE=0x82;
TRO=1;
while(l)
{
adc (1) ;
[/ oubput port=nuniies;
UART TxChar (number);
!

Exp name: Connecting an external SPl ADC with 8051

Objective: i) To understand how we can connect and drive an external ADC which is connected by
SPI bus with the 8051

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: Here also we have followed the timing diagram {please follow the timing diagram
of the IC in its datasheet). Only difference is that here the ADC is following the SPI protocol and so
we are generating the same from the controller with the help of software. This process is bit
banging. Another option is if the related hardware to generate the control signal is already there
within the controller. In that case, we need not have to worry to follow the timing diagram as in that
case it is governed by the related hardware module. Here we use the bit banging option.

In addition to that, here again we have used the serial communication protocol for the purpose of
reflecting the read ADC vale into the computer terminal.

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2)
the reset circuit connection {please correlate with the associated theory)

A
LI
BE e PO.EC0 %
P A0
) PO 27402
L PO g
POALA et
PSS i
PO B/ADE
Sdrsr PO TIADT ﬁ
21
P2oms f=t
po 1ag L2t
5 23116
gﬁ— FEEN P2 3R
e a2
I . pesaa
BIAI4 ﬁ
B2
| I +5%
——friz PanRE =t
2 Jriq P AT
P13 P52 b
P13 FEIANTT bt 2
o L i .
—F15 PS5 i > — T3 WREF
pia PRI cLie ARG
i B17 FEIRD CEE e B
ATEECE]
Program:

#incluade <AT89x51, hx>

sbitdegS = P3°5:
gigditads CLE = P376;
sbitade DATA = P37°7;

vooldputst {char s[]):
charUART ExChar(void);:
voldUART TxChar(char ch):

voldUART Init ()

void delay(unsigned int);

vl Ll EREDCOREL (X,
yedd BeadaDEBe3l £} ¢

unsigned char number;

vold delay(unsigned int d)

{
unsignedinti;
for =gy d1ad; 1+4);
}
void InitADCO831 ()
{
ade CLK = 0;
ade &5 — Lz
ade DATH = 1;
|

void ReadADC0O831 ()

{
unsigned char i;
number=0;

// setup time
ade gLk = 0;
ade @8 = Oy
delay (500) ;

// start conversion
ade CLK = 1;
delay (500) ;
ade CLE = {3
delay (500) ;

// conversion complete

ade ELE = L;

// data shifted outdfrom adc in -ve edge

farti = 0F T« :
{

T+)

ade @K = 0; delay(500);
number = number<< 1;

number =number |
S ek = 1; delay(500] ;

1
ofEmrTT

}

voldUARE Init()

{
SCON = 0x50;
TMOD = 0x20;
@iy - Oxrd:
TR1 = 1;

1

voidUART TxChar (char ch)

{

adc DATA;

// Bsynchrontdatous mode,
//Timerl in ModeZ.

8-bia and l-stop bit

//Turn ON the timer for Baud rate generation

SBUF = chy 74 liead the dabe te be transmitbted
whi Te {Tl==07% ; £7 Waltb will the dabta is Drasmitbed

LI = i //Clear the Tx flag for next cvcle.
}

charUART RxChar(void)
{

chat %;
while (RI==0) ; // Wailt till the data is receivéd
RI=0; A4 Cledy Roceive THLerTup g OQQOT next ¢vale
x=SBUEF;
AeTTEnE 3 // return the received char

}

voidputst (char s[])

{

L

For tr=lps] =0t
{

UART TxChar(s[i]): // Transmit predefimned s¥ring
!

}

voldInitSystem()

{
TRILADCOE3L [
UART TInit({):

}

vold main ()

{

unsigned char pnumber;

Ty InitSystem() :
UART Teridly

while (1)
{
ReadADE0831 () ;

if(pnumber !=number)
UART TxChar (number) ;
prumber=number:;

Exp name: Connecting an external I2CEEPROM with 8051

Objective: i) To understand how we can use and connect an external |2C device { here it is one
EEPROM) with the 8051

Tools used: Keil IDE and ¢51 compiler to generate and build the project along with Proteus ISIS for
simulation

Theory/Principle: Here also we have followed the timing diagram {please follow the timing diagram
of the IC in its datasheet). Only difference is that here the |2C protocol is used { please review the
protocol} and so we are generating the same from the controller with the help of software i.ehere
we use the bit banging option again.

In addition to that, here again we have used the serial communication protocol for the purpose of
interacting with the user in storing {and reading) the value and position of the data to and from the
EEPROM.

Circuit: The associated circuit is shown below. Two more things to note: 1) the crystal connection 2}
the reset circuit connection {please correlate with the associated theory)

Ri Rz
” U1 e 4Tk 47k
L2 R eraLy [12
Pt =2 5 .
5 Pz 2dack anf2
LN e P 2 [§ = o ALy =
PO [R
X
POSADS |t
EE aLCes
u Popane =2
e L PR7ALT =
po v 2t -
F2 v =
= rz 2 -2
ZTEER P2 Al 2t
O P2 A i
B® e S04
e
72 7o [k ol
Fin PR — TRl
Pi FANTAD
Fiz 73 2T e
P13 FIEAHTT o
P14 3T e
Bl F35.00T1
Fin EEONVE
La e P].ij' e

|
e
TR

Program:

Program Lo write "HELLO™ into 12¢ eeprom memory positions [1:5)
and read by address

#include <reg5l.h>

//Delay far Ifc

#defiine I2C DELAY 50

/leontrel address of 241c64

#define device addr 0OxAD

#define ACK BIT €]

/#Define the Pin for the I2c and lec
sbit SDA BUS P2™0;
sbit SCL BUS = P2°1;

[b2

v Ll ievad) ¢

vold Startl2e{veid) ;

vold RepeatedStartI2e (voild) ;

el Stupllelveldy

voldSendAckBit (void) ;

voldSendNackBit (void) ;

vold delay(unsigned int);

bit write i2c{unsigned char);

unsigned char read i2e fvaid) i
voldwrite byte to eeprom{unsigned int,unsigned ‘€hard;
unsigned char read byte from eeprom(unsigned int)s

==£t24 /
vodtdoatstichar 5[])3
charUART RxChar (void) ;
voldUART TxChar (char ch);
voldUART Init();
P S ., . 2
Definition of I2¢ functions
N

/‘k‘k
\brief of delay function.
This function provide the delay which i1s used in clock generation.
Hy
void delay(unsigned int d)
i
unsignedinti;
Goe (=t deds ddE)s
}
/‘k‘k
\brieft of Imitllec r@ACEERoN .
This function wuse to make the data line and clock line idle to put
the both line high
.
vold TrHitT2¢ (vdikds
{
SDE BUSSGCR
SCL _BUSma
}
/‘k*
\brieft of SW@Ptllec functiomn.
This function performs the start operation to initiate the
communication.
o
voldESza@®r 1 2c{ void)
{

SDA BUS = 1;

SCL BUS = 1;
)
0
)

r

d84gy { T2C_DELAY

SDA BUS =
delay (I2C DELAY
}

r

r

/‘}c*

\brief of yoid EepeatedStartlZe funetion.

When master does not want tTo relaese the contrel from the bus then
it assert the repeated

shart ceondition on the 42 bus.

i

vold RepeatedStartIZc()

i

SCL BUS = 0;
delay(I2C DELAY/Z2);
SDA BUS = 1;
delay(I2C DELAY/2) ;
SCL BUS = 1i
delay(I2C DELAY/Z);
SDA BUS = 0:

delay(T2C_ DELAY) ;

i

/‘k*

Sbrief of wold Stoplle fumcbion.

When master want to stop the communication then it will assert the
stop vondition to the iZ2e bus.

"

void StopIZc(veoid)

{

SCL BUS = 0;
delay(I2C DELAY/2)
SDA BUS = 0;
delay(I2C DELAY/Z);
GO BE = 1
delay{ 120 DELAY/2) ;
SDA BUS = 1;

delay|I2C_DELAY) ;
}
/‘k‘k
\brief of SendickBdE Eanctiocn.
This function use te send the acknoledgement (ACK) bit the i2c¢ bus.
T
volidSendAckBit ()
{
SCT, Bl - W@
delay(I2C DELA¥/2) ;
SDA BUSm= 0}
delay(I2C DELAY/2) ;
SCT, Wi = 1;
delay(I12C DEEERY) ;
1
/‘}c*
\briEr ol SendNackBit funection.
This function use to send the Non-acknoledgement (NACK) bit the iZ2c
hass
{ 4
voidSendNackBit (void)
{
50Ty BUS = O
delay(I2C DELAY/2)
SDA BUS = 1;

delay(I2C DELAY/2);

T BUE — 1as
delay(I2C_ DELAY) ;
}
/‘k*
\brief of write i2¢ function.
This function use to send signle byte to the I2C Data Bus
G
ik write 12e¢(unslgned char byte)
{
unsigned char i;
for ti=0F 1<8; 1+t

{

SCL BUS = 0;

delay{I2C DELAY):
if{ (byvte<<i) &0x80)

SDA BUS = 1;
else
SDha BUS = 0;
delay(I2C DELAY/Z2);
BEL BUS = dj

delay(TI2C DELAY) ;
1

//ack from slave //

SCL BUS = 0;
SDA BUS = 0;

delay(I2C DELAY/Z);
SCL BUS = 1i

delay{l2C DELAY):
return SDA BUS;
1
/‘k‘k
\brief of write 12c¢ £SHRI of.
This function use to read The data from the I2C data bus
i
unsigned char read i2c (yoid)
i
unsigned char i,d, rxdata=0;
for (1=0; 1x8; B4

{

scIgls, = 0
SDA_BUS = 1;
delay (I2C DELAY) ;
WhhaUs = 1;
delay(I2C DELRY/Z2);
d=SDA BUS;

rxdata=rxdatal (d<<7-1) ;
deldy (#2CYDELAY) ;
1
returnrxdata;
!
/‘k‘k
\PEZRL of write byte to seprom function.
This function use to single byte the eeprom at desire address
*///Write Data to ecprom memory
voldwrite byte to eeprom{unsigned intaddr,unsigned char byte)

{
StartliZe) ;
while(write iZc(device addr|0)==1)
{
Segrtlael) o
!
write i2c{addr>>8) ;
Write i2¢{ (unsighed char)addr) ;
Write 12¢ibyte);
SEHOTEC) ;
}
/‘}c*
‘\brief of read byte from eeprom function.
This function use to read the data byte from geprom at the desire
the address
iy
unsigned char read byte from eeprom(unsiglige intaddr)
{
unsigned char rxdata =0;
StartL2al)
while(write iZc(device addr|0)==14
{
StareTaal) ;
1
write iZ2c¢({addr>>8) ;
WEite 12467 (ingigned, <har) addr) 7
RepeatedStartI2c() ;
write iZc¢({device addr| 1)@
rxdata=read 12c(};
SendNackBit () ;
SkoplEasl)
returnrxdata;

voildUART TInit()

{
SCON = 0x50; (// BRsynchrontdatous mode, 8-kia and l-stop bit

TMOD = 8x20% W/ Timerl in ModeZ2.
TH1 = OxEd:
TRl =_Tla //Turn ON the timer for Baud rate generation

}

voldUART Tx€Rer (char ch)
{

SEBUE - ch; £ Load the daba te be tranpsmitbed
whi & (@9 =80 ; L4 Walt will the dabas As Srasmitbed
R =4 ; //Clear the Tx flag for next cycle.

}

chaXUART RxChar(void)

{

char x:

while (RI==0) ; // Wait till the data is received

RI=0; /7 Clear Recelve Interrupt Flag for ncime:] o
x=SBUEF;

B) & // return the received char

}

voldpatstichar s[])

{

IMELL

fer{i=0is[1] =081 ++)
{

UART TxChar(s[i]): // Transmit predefined string
1

}

/74 Main funetion
vold main (void)
{ int e=dl,1=03;

charrd;
unsigned char rxbyte=0;
unsigned char cSendByte = 'a';
SDA BUS = 0;
S@l: BUS = 0F
T T l) 3

UART Init(};:

write byte to eeprom(0x0001, 'H')%
write byte to seprom(0x0002, "ET)
write byte to eeprom(0x0003,'L");
write byte to eeprom(Q£0004,'L")
write byte to eeprom(0x0005,'0")

while (1)
{
putst ("type address (1:5) GO read data from");
UART TxChar (0x0d);
rd=UART RxChar () ;
rdl={int)rd - Oxgh;
rxbyte=read byte frém@@eprom(rdl) ;
delay(5000) ;
UART TxChar (rxzbyte);
UART (TxChar (0%0d) ;

HOW TO USE PROTEUS

The simulators | menticned in my previcus post were strictly for beginners. They just
show you the cutput of the microcontroller se you can learn how everything works,
They will accompany you as long as you are dealing with manipulating the data on the
ports or registers, Sconer or later, you will be going further and attaching external
hardware to the 8051 but that's exactly how we deal with it. So if you're talking about
simulating a complete circuit then you actually need PROTEUS for this.

UPDATE: You can also click this link for an updated version of this post with. more
insight and explanation.

oy W B Wi (AP (e sees Ows) sy Teesde i
i

e R bl DL 2 LI Sl s

G
=
.
=
*

|

EUPNUMRNE N VEET TR R TR v

PROTEUS Ervirgnment

WHAT IS PROTEUS?

Basically PROTEUS is also a simulating software but it helps you attach many
compaenents with the 8051, Like resistors, capacitors, LEDs, LCDs, keypads, ICs etc, and
these are just few that | have named in general. It has a complete library and you will
find everything that you will ever need. You can design your complete circuit and then
simulate it to view the final output. This means that after perfecting your project en the
pregramming side in KEIL, you'll need to simulate it on PROTEUS te determine the
output of the hardware components and change it if need be. This will completely

ensure yourpreject's success.
DOWNLOAD PROTEUS
It is a paid application but you can downlead the free demo version of PROTEUS from

their official website here. Itis fully functional except that it won't allow you to save your
designs.

USING PROTEUS

PROTEUS is designed to be user-friendly and you will get the hold of it instantly. There is
no need to worry about some complex configuration / settings prior to simulation. Here
are the basic steps.

Place your components from the library

Connect them accordingly
e |oad HEX file (if 8051 is involved)

® Simulate the circuit

Let me explain each step.

PLACING COMPONENTS

e (Click the "Pick from library (P} button as shown in the figure
o Select any category
e Selectitem from the list

e Click OK

(ol §iaei e]

W E B

R

Click to enlarge

® After selecting component, click anywhere in the design area to select it and
then click again to place it

s R S e e

Click o enlarge

CONNECTING COMPONENTS
e Place all the required components

o Connect the desired nodes by clicking at starting and ending points

Click to enlarge

LOAD HEX FILE
& Double click the 8051 component to open its properties

® Browse for the HEX file as shown and select it

And don't worry, in PROTEUS, there
oscillator to the microcontroller. 1t will work jus

ovide the RESET circuit or crystal
ven without it. The frequency can
be adjusted:in the properties window ag

SIMULATING THE CIRCUIT

'« The controls at the
time

will help you simulate the eircuit in real

-C.Ii'ck.-tc':enﬁlrge

The above picture is the complete circuitry for testing an LED on P2.0 like toggling (ON /
OFF) through programming but we will get to that part later on. At this point, you will

just see the LED glow if you have programmed it to be always ON. Again | am

emphasizing that there is no need for cther connections to the microcontroller,

8051/52 Programming Using Keil pVision IDE

Step 1: Downloading Keil pVision IDE

ArmekEiL

f Products Download Events Support Videos

Download Products

Select & product from 1he list beow Lo downicad 1he latest version,

i MDK-Arm [=TH C51
ersion 5282 (s 2045) Bl i o ey
‘ Cevelanment environment "or Sodes and Arm devces v Development 10oks Tor all 0581 devices.

C251 <) €166
versix S8 (s 2015 o Tl Mermioe 757 ey 2015
LevEIoament 1eais Tor all Hi2sl oavices. Lieve opment 10015 70r 150, XU168, & X200 MULs

Kell prociaci= BE & Likense Managemant aystem - without a coment icense the prodLUct rins &s 4 LNeEvaiuation adiion with 3 few _imitatons

Keil provides a code limited (2K bytes) evaluation version for 8051
architecture (C51) which is sufficient for learning purposes.

The main limitations of the evaluation version are the following.

8051 compiler, assembler. linker, and debugger are limited to 2 Kbytes of
object code

Programs that gencrate more than 2 Kbytes of object code will not compile
The debugger supports programs that are 2 Kbytes or smaller

No hardware support for multiple DPTR registers is provided

Keil wVision IDE (Evaluation Version) can be downloaded using this link.

On Clicking the above link you will be redirected to Keil Website Download
section.

Flease click on the C51 iconto download 28051 development tocols (abave
Figurey
and download your Windows Executable.

Step 2: Creating a 8051/8052 Project Using Keil Uvision IDE

aarvEen | .
Bl b Flash Debug Peripherals Tools SVCS Window Help
T E8 & §| Mew pVision Project...

S Mew Multi-Project Workspace. .,
1 { :.:. .-::-_

Open Project...
Project

Close Project

Export

Manage

Select Dewice forfarge: ...

After vou have mstalled the Keil uVision tools for 8051, Deouble click on the
Eeil icon on your Windaws Desldtop to launch the IDE,

To create a new 8051 project using Kal IDE, Click onthe ' Project ' iterm on
the IDE MMenu bar and select ' New uVision Project... "as shown in the above

image.

Mow create’a Folder to store your project and give a name to your Project

files (* wwprog), for eg Test (Testuvpro).

Step 3: Selecting an 8051 Device in Keil

STITLL ATV IGIH'EL IUFHEI.J. an

Device l

Vendor: <unknowns
Device: <unknown:

Toalset: =zunknown:

Search:]|

Description:

ABOV Semiconductor i‘
AcerlLabs

Aeroflex UTMC

Altium

Analog Devices

AnchorChips

ASIX Electronics Corooration
Atrnel

AustriaMicroSystems

Cadence Design Svstems Inc. _I._j

L L0 L9 L L OO0

You will then be taken to the device selection dialog, where you can select

the 8051 denvative for which you want to develop software.

Keil has suppoit for awide variety of 8051 derivatives on its IDE.The 8051

derivatives are organised according to their manufacturer’s.

On selecting the particular microcontroller the Keil IDE also displays the
features of the selected microcontroller on its left pane .You can Click OK to

confirm your choice.

Step 4:

HVISION

— Y. _

Iel Copy 'STARTUP.A51' to Project Folder and Add File to Project 7

After selecting your 8051 derivative,
You will get another dialog as shown Above.Asking to copy STARTUP.AS1

Click ' Yes'

Step 5:

B CAsersRahol Adrmin\DocumentTestTestuvproj -Vison

[Fie ""M Ffmﬂﬂ ﬁﬁ'r Mw"mﬁhﬂm i
o= ui'_“rl 5 It.l

i *ﬁﬂ Target 1

| Project

= “% Project Test
El% Targetl
Sl] Source Greup 1
- |1 STARTUR.AS51

] Project %Bnak‘.s | {."}xFunctl..p.l.__&_ﬁmpl:..l

Build Cutpit

Now your Proj ect pane on the Kiel IDE would look something like this

(above image)

Step 6: Adding C Files to Keil Project

—
= ¥4 Project: Test
B sz Targetl
=k Scurce Group 1
"] STARTUP.AS1

Crptions for Group "Source Group 1.,

Add Mew Hemio Group "Source Group L.
Add Existing Files to Group 'Source Group 1'...

Eemove Group "Source Group 17 and its Files

Rebuild all target files
Build Target

Manage Project Hems...

'f Show Include File Dependencies

Now you can add C files to you Project.

Right Click onithe Somrce Group 1 folder on yvour Project pane and
select Add New Item to Group "Source Groupl'...

Step 7:
Now vou can select the tvoelad fole vamcwant to add to vour proiect using

Select C File(.c) and give it a name (here main.c) and Click Add.Now you can

type a small program into the main.c to blink the LED'Sconnected to Port 1 of

8051 .You can find the source code below.

TRARERXRARXARERERE

#include<reg52.h> // special function register deelarations
// for the intended 8051 derivative
P3 = 0x00; /loutput port used for leds
shit LED =P3"5; // Defining LED pin
void Delay(void); // Function prototype deélaration
void main (void)
{
while(1) // infinite loop
{
LED =0; /l LED ON
Delay();
LED= 1; /l LED OFF
Delay():

}
H
void Delay(void)
{ . .
mt J;
int i;
for(i=0;1< 105i++)
|
for(j=07j<100003++)
{
¥
¥
3

Step 8: Building a C Project Using Keil UVision IDE

R _ — N— —
File Edit View Flash Debug Peripherals Tools SVCS Window <Help

1= Lﬂ h'jl Mew pVision Project...

8;.% 5] @ Mew Multi-Praject Workspace...
Open Project...
Projact
itk : Close Project
= % Project: Test
B3 Targetl Export

By Sourn Manage

B

J Select-Device for Target ...
r
Remove Group Source Group 1l and is Files

j;i Cptions for Group "Source Group 1.

Clean Targets

Rebuild all target files
& Batch Build...
41 §g,°‘>,.< Translate Ch\Users\Rahul_ AdmimDocuments\Test\main.c Ctri+F7F

| e (@ 11

After you have typed out the above ¢ program to your main.c file,Y ou can
compile the C file by pressing F7 key or by going to ' Project -> Build
Target ' on the IDE menu bar.

L e e o

-

Build target "Tasget. 1!

azsembling STARTUP.ASL. ..

compiling main.o. ..

linking. ..

Program Size: data=9.0 xdata=0 aode=5%
r.AObjecte\Test™ — 0 Exzror(s), 0 Warning(s).
Euild Time Elapsed: 080:00:01

If there are no errors the codewill compile andvou can view the output on
the Build Cutput panel.

Step 10: Generating 5051 HEX File Using Kiel IDE

E T Froect: Test

- g Ta #5 Dptions for Target Target 1 ..
!-_.I :__‘?... i
Add Group,,

= @ manage Erajer TAms..
Open Map File
Opcn Buic Log
Rebuild al Laigel files
Bulld Target

Show Inchuda File Dependerdes
T i

Inorder to download the codeinto the 28051 microcontroller we have to

generate the corresponding hex code

In Keil uVision IDE you can generate hex file for your 8051 derivative by,
Right Clicking on the ' Target 1' Folder and Selecting Options for Target
"Targetl’....

Step 11:

R T S T S T T BT TR,

- i -

Device | Target Output]lusting] User | c51 | 451 | BLS1 Locate | BL51 Misc | Debug | Uiities |

Select Folder for Objects... | Narme of Execttable: [Test

{+ Create Executable: NObjects’Test

W Diebug Information W Browse Information

W Create HEX File | HEX Format: [HEX-80 =l

" \Objects\Test LIB [Create Batch File

Then on the Options tor Target ' Target 1' Dialog ,
Select the Output tab and check the Create Hex File option and Press OK.

Now rebuild your project by pressing F7.
Kiel IDE would generate a hex file with same name (here Test.hex) as your

project in the Objects folder .

Step 12: Viewing the Generated Hex File

7| ledblink - Notepad

File Edit Format View Help

10C081000C2B80120800D028012080080F4123
:10080000E4FFFEE4FDFCODBDO00L0CBC2YFEED10AB
:0CO81000F50FBFO0010EEFE40A4ETOET DS
:01081C002269

:03000000020829CA
10C0829007 87 FE4FODEFDY 5810702081 DF9
:00000001FF

You can open the Test.hex file with notepad to view the contents after

creation.

Experiment Name: Familiarization with the 8085 simulator with simple assembly instructions
Objective: To be familiar with the simulator as well as assembly instructions

Procedure: Open the simulator by double clicking the symbol “8085 simulator IDE” from
Oshonsoftincon the desktop. From the main window, go to tools->assembler to open the assembly
window, which we will be using for all successive programs for the purpose of writing and
assembling our assembly programs. Also, one may open 10 editor {among many other windows) for
input output purposes as shown below the main window. Another very important window is the
memory window where from one can see zll the memory content of the processor including the
code and data.

Edy ook
-org BO00R
LXI 5F, 0000h
L1: MVI A, 0FFh
ouT 80k
CAaLL Dela
MVI A, OO
auT &0k
ChLL Delay
ave L1 SRS e
hit f
end T —
oelay: MvI A, 5h 1
back: Dpie oA
INZ back
RET

Cotizre

o G685 Simstnr TERA.ob
Laetalruction | TNT BO06H S0-0 | =0 |
[riest retrliction | DCRE '

Picoram Courter and Stack Pokiter
| e Cows [E oo

i1, 0ol

(5 Pemory Editor - *
! [@1 23 +#+5 6 7 @& % A BCDEF
0On0: OO 00 06 00 00 06 00 00 G0 00 00 00 00 00 00 00
{Wlﬂ. 00 00 00 00 00 OO 00 00 O 00 00 00 00 O0 00 00
$0020: OO 00O OC ©0 DO OC 0O 00 OO 0O OO0 OO F3 CJ 02 A0
10030 00 00 OF 40 00 00 00 00 00 00 00 00 00 O 00 00
£0030: 00 00 O0 00 00 OD 00 00 00 00 00 00 00 00 00 00
§0050: OO 00 63 00 00 00 00 00 00 00 OO0 00 00 OO 00
§00E0: D0 00 OO 00 DO Ok 00 00 O3 00 00 OO0 00 00 03 00
{070: 00 00 06 U0 00 00 [0 00 OF 00 U0 0L 00 0D 00 00
OB OO 00 O 60 00 0F 00 00 00 00 00 00 00 OF 00 00
{0050 00 00 00 060 00 00 00 00 00 00 00 O 0O O O 00
t 00 00 00 00 DG OO 0O 00 O0 00 00 00 00 00 00 00
00 00 00 00 DO 00 00 00 OF 00 00 OO 00 00 00 00
00 00 OF (0 00 00 00 00 00 00 00 D0 00 00 00 00
00 00 O 63 00 00 00 00 00 00 00 00 00 00 03 00
00 00 00 060 00 00 00 00 OF 3000 DO 00 00 00 00
0 0o 00 00 00 OO DO 00 O3 00 00 O0 00 00 OO 00 e

6
|
:

£ Type here to search

Write a sample program as given below, in the assembly editor and assemble it. If any error is there,
it will be shown in the attached window.

+org 8000h
mvi A, 34h
mvli B, 53h
add B

Lend

Observe that .org and .end statements which are called “assembly directives”, by which we direct
the assembler to instruct the starting position of program in memory and where program ends.
Please note that, the format of the program written above is specific to an assembler but normally
the assembler designers follow almost the same format in most cases.

Once assembled, load the assembled program (the object file) from the main window (file-> load

program) into the simulator.

Now one can simulate the program with different speed set from the simulate tab. Here we will use
“step by step” such that in every step of execution of instructions, we can observe different register

> change starting address .

Experiment name: Use of branch instruction to place some finite number of values into memory in a
loop

Objective: To be able to implement loops using branch instructions

Procedure: Use the same simulator as used in exp-1 to understand the operation in a loop with the
help the program given below-

.0rg 8000h
MVI A,02FH :initial value in register A
LXT B,0FFO0OH ;initial wvalue in register pair BC
Lol STAX B ;leocad value in A to the memory lecation addressed by BC
INX B ;increment BC
DCR A ;decrement A
JNZ L1 ;loop wntil value in A 1soo
STAX B ;load value 00H to memory location FFFFH
HET shalbepa
. END

Here in the program, values of register B starting from 2Fh is
copled to memory location FFOOh upwords and decremented every time
LT e L.

Experiment Name: Blinking a LED with 8085

Objective: To be able to use output instruction of 8085 as well as to implement time delay using
assembly instructions

Procedure: open the simulator and load the program given below after assembling-

.org 8000h
LXI SP, 9000h
Ll MVI A,OFFh
QUT 80h
CALL Delay
MVT A, 00h
QUT B80h
CALL Delay
JMP L1
[l
.end
Delay: MVI A, 5h
kack: DCR A
JNZ back
RET

Note that, the LED connected to the port number 80h of 8085 is alternatively made on and off in the
loop L1. And every time the LED is either made on/off, it is allowed to stay in that status for some
time by putting some delay before changing the LED status.

Observe that, here we have used the stack by initializing the SP. As we are using the CALL
instruction, we will have to use the stack for storing the PC value to be popped while returning back.

Experiment Name: controlling a LED by a switch with 8085
Objective: To be able to use input/output instruction of 8085

Procedure: open the simulator and load the program given below after assembling-

.org 8000h
ol IN 8Ch
QUT 81lh
JMP L1
il =
.end

Open the input/output editor and Execute in “step by step” mode. From the input/output editor, apply
some input after setting port number to 80h. Observe that the same is reflected into the output port
81h set in the similar manner in the input/output editor window.

Experiment Name: Interrupt based input/output with 8085

Objective: To be able to use interruptwith 8085

Procedure: open the simulator and load the program given below after assembling-

.org 8000h
LXI SP, 9000h
B
Ll MVI B, OFFh
kack: DCR B
JNZ back
JME L1
I e
.end

. weey Ok
il A

Jmp OA00Oh

.org 0A000R
IN 80h
G B
EL
RET

Here, first the interrupt is enabled by El instruction. Microprocessor runs the program to decrement
the value of register B in a loop normally. When it is interrupted, it comes out of the normal flow and
goes to the location (predefined vector address) 2¢h which 1s called ISR address. There from it goes

to location ADOCh where actual routine is written. In our case the routine is to read the input switch
vale and reflect it to LED.

