- THE NEOTIA
UNIVERSITY

DEPARTMENT OF ROBOTICS & AUTOMATION

Motion Planning

LAB MANUAL

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NO.: 1

NAME OF THE EXPERIMENT: Two assignments on Programming the Robot for applications.

OBJECTIVE: To study the Robot programming for industrial applications.

THEORY:
PROGRAM 1:

Palletizing application using Al.. Begin ‘Palletizing sample program’ Frame in-pallet, out-pallet,
part, Comment

The (1, 1) positions of the pallets and grasping position of parts;
Vector del-rl.del-cl;

Vector del-r2 del-c2;

COMMENT relatives” displacements along the rows and columns;
Scalarrl, cl, 1rl, 1c1;

Scalar 12, ¢2, 112, 1c2;

COMMENT COUNTERS:

EVENT in-pallet-empty, in-pallet-replaced;

EVENT out-pallet-full, out-pallet-replaced;

COMMENT

Here insert the frame definition for IN-PALLET and OUT-PALLET and the vector value for
displacements along and recorded using robot

PROCEDURE PICK;
BEGIN

FRAME Pick-frame; Irl=1rl1 +1;

LFirl =slTxl

THEN

BEGI

w6l Ik

ielelTel

THEN

BEGIN

SINGAL in-pallet-

empty; WAIT in-
pallet-replaced;

1icl=1;

END

END

Pick-frame; = in-pallet+ (irl-1)*del-r1+(icl-
Ly*del-el MOVE BEHIND TO PICK
FRAME;

CENTRE BARM,;

AFFIX PART TO BARM,;

END
PROCEDURE

PLACE BEGIN

FRAME PLACE-

frame 1r2 = ir2+1;

IF 1r2=c1Tr2

THEN BEGIN

1r2; =1;

162 =4¢2+] TF

1e2=cl1Te2

THEN BEGIN
SINGALOUT-Pallet-empty;
WAIT OUT-Pallet-replaced;
1c2=1;

END;

2

END;
Place-frame; out-Pallet+(ir2-1)*del-r2+(ic2-
*del-r2. MOVE Part To Place-frame.
OPEN BHAND To

3.0*IN UNFIX PART

FROM BARM;

END;

o

COMMENT THE main

Program, OPEN BHAND
To 3.0*IN; WHILE TRUE
DO

BEGIN

PICK;

PLACES

END:;
END:;
PROGRAM 2:

Palletizing application using KAREL

PROGRAM PALLET

---Transfer workpieces from one pallet to another.
---Variables for the mnput pallet,
BASE 1; position—(1,1) pesition on
pallet. IR 1, IC 1: integer.

NRI1, NCI. integer.

DR 1,DC 1:

vector. 1S1G1,

0S1G1; intger.

--Variables for the output

pallet. BASE 2; Position

IR 2. 1€ 2: integer.

NR2, NC2: integer.

DR 2, DC2: vector.
1S1G2, 081G2;
intger. ROUTINE
PICK

--Pick a workpiece from the imput
Pallet. TARGET: POSITION—
targetpose BEGIN
IRT=IR1+

1If

IR1>NRI1

Then

LRI1=1

ICI=ICI+

1

I ICIZNC]

Then,

IC1=1

dout (0S1G1)=true
wait for din
(1S1G1) +dout
(0S1GT1)=talse.
End

1f

End

1f

TARGET = BASE]1

Shift (TARGET, (1R1-1)*DR1+(1C1-1)*DCl1
Move near TARGET

by 50 Move to

TARGET

Close hand 1

Move away 50

and Pick

ROUTINE PLACE

--Place a workpiece on the output
pallet var TARGET:POSITION.
BEGIN [IR2=

TR2+1

[fTR2>NR2

Then, IR2=1

IC2=IC2+1 If

[C2>N@

Then,

IC2=1

dout (OSIG2)=true.

Wait for din

(1S1G2)+1 dout
(OSIG2)=false.

End

1f

End

if

TARGET=BASE 2
Shift (TARGET, (1R2-1)*DR2+(1C2-1)*DC2
Mover near TARGET
by 50 Move to
TARGET

Close hand 1

Move away 50

end Place.

MAIN PROBLEM

BEGIN
IR1=0;
16189
IR2=0;
[S%§0

--initialize other variable

--BASE 1, NR1, NC1, DR1, DCI, ISIG1,0S1G1.
--BASE 2, NR2, NC2, DR2, DC2, IS1G2,081G2.

--numerical pose definition
omitted here. Opened hand 1
While true do—

loop. PICK

PLACE
and while
and PALLET.

CONCLUSION: Thus, we have studied the Robot programming for industrial applications.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NO.: 2

NAME OF THE EXPERIMENT: Two assignments on Programming the Robot for applications in
VAL-IL.

OBJECTIVE: To study the Robot programming applicationin VAL II.
THEORY:

PROGRAM:

Palletizing application in VAL II:

In the VAL II version of Palletizing application, the program transfer parts between two Pallets
using the external binary 1/0 signals to request additional pallets. It communicates with the user
via the system terminal asking questions and providing information on system operation. A Pallet
location 1s taught by instructing the operator to move the robot to the corners of pallet. The
program then computes all locations in the pallet.

PROGRAM Main ();

ABSTRACT:- This 1s the top level program to move

: Thee parts between two Pallets. It allows the operator

. To teach the Pallet locations if desired & then

: moves parts from one pallet to next

: DATA STRUCTURE

; in. Pallet [.]=An array of location for items on the pallet to be unloaded.
. in. height =approach/depart height for input pallet.

. in. max= The no. of items on a full input pallet.

. in. count= The no. of items left on this I/P pallet.

. out. pallet | | = An array of location for items on pallet to be loaded,
; out height = approach/dipalt height for O/P pallet.

; out. max= The no. of items on a full O/P pallet.

. out. count= The no. of items left on this O/P pallet

: #Safe=soft robot location reachable from

both pallets LOCAL sans in count, out count

Define binary signal no. used to control pallets transfer =1001; input signal
TRUE when transfers permitted

in.ready =1002; I/P Signal TRUE when output Pallet ready
out ready =1003; I/P Signal TRUE when O/P

Pallet ready in. Change=4; O/P Signal requests
new /P Pallet

out. Change=5; O/P Signal requests new O/P Pallet

. Ask operator about set up and teach new pallets
ifdesired PROMPT “Do you want to define the
pallet (Y/N)”Sans IF Sans =="Y"THEN

DETACH (); Detach robot from program control

TYPE “Use the PENDANT to teach the I/P Pallet
location” CALL set up. Pallet (in. count, 1n pallet [
|, out. height)

TYPE “Press the comp. button on the PENDANT to
continue “ ATTACH ()

END

. Initialize transfer

data transfer count

=0

n.

count=0

out

count=0

. wait for transfer signal; then start the pallet
transfer MOVES # Safe

TYPE “waiting fortransfersignal /S

WAIT SIG (transfer)

TYPE * starting transfer”,/c2
Main, loop transferring one pallet to another, requesting;

:new pallets as necessary; Quit when
transfer signal becomes FALSE
WHILE. SIG (transfer)

DO IF in. count<=0

THEN SIGNAL in.

change

WAIT SIG (-

in.ready) WAIT

SIG (in. ready) in.

count= in. max

END

IF out. Count <0
THEN SIGNAL
OUT. Change WAIT
SIG (-out. ready)
WAIT SIG (out.
ready) out. count=
out. max END

OPEN

APPROS 1n Pallet [in. count],
in.height. SPEED 20
MOVES 1n. Pallet [in. count]
CLOBET

DEPARTS in.

height in. count =

n. count-1

. Place output part

APPROS

out SPEED

20

MOVES out. Pallet [out.
count] OPEN I

DEPARTS out.

height out. count =

out. count-1

. Count transfer and display it.

transfer. Count = transfer.

Count+1

TYPE N, "Number of parts transferred,” / 18,
transfer. count END;

. All done transferring parts, move robots to safe
place and quit MOVES # Safe

END

PROGRAM set up pallet (count. Array [|,approach)
: INPUT PARM ; NONE;

:OUTPUT PARM ; Count = No. of items on their
pallet. array []= Array containing the pallet
location

approach = The approach height for their

Pallet. Local rl; 11, 1r, ap, t [], ncol,

nrow

Local row, COL.cs, 1s, 1, frame

Ask operator to teach pallet location

CALL teach. Point (“Upper left pallet
location™,L.1) CALL teach. Point (“Lower left

pallet position”, L.1) CALL teach. Point

(“Lower right pallet position”, Lr)

CALL teach. Point (“approach height above
pallet”, ap) PROMPT “Enter the no. of columns
(left to right);” ncol PROMPT “Enter the no. of
columns (top to bottom);” nrow Count =
ncol*nrow

: set up to compute pallet

location cs =0

IF ncol>1 THEN

cs =DISTANCE

(I111lr)/(ncol=1) END

; Compute frame values

SET frame = FRAME

(1L1r,11L111) approach = DZ |

INVERSE (frame);ap|

DECOMPOSE t[1]=111L

LOOP to compute array

value 1=1

For row=0 to

nrow-1 For col=0

to ncol-1

SET array [1]= frame.,; TRANS (row*rs,

col*es,0,[415].46] i = i+1

END
END
RETUR

N END;

CONCLUSION: Thus, we have studied the Robot programming for application in VAL II.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS 8 AUTOMATION

EXPERIMENT NO.: 3

NAME OF THE EXPERIMENT: Exercise on Robotic Simulation Software.

OBJECTIVE: To study the Robot path planning using Robotic simulation software.
THEORY:

The locus of points along the path defines the sequence of position through which the robot will
move its wrist. In most applications, an end effector is attached to the wrist and program can be
considered to be the path in space through which the end effector is to be moved by the robot.

Since, the robot consists of several joint (axes) linked together, the definition of the path in space
in effect requires that the robot move its axes through various positions in order to follow that
path for a robot with six axes, each point in the path consists of six coordinates value corresponds
to the position of one joint. There are basic robot anatomies; Polar, Cylindrical, Cartesian and
Jointed Arm.

Each one of three axes associated with the arm and body configuration and two or three
additional joints are associated with wrist. The arm and body joint determines the general
position in space of the end effector and the wrist determines its orientation. If we think of a joint
in space in the robot program as a position and orientation of the end effector, there 1s usually
more than one possible set of joint coordinate values that can be used for the robot to reach that
point.

For example, there are two alternative axis configurations that can be used by the jointed arm
shown 1n figure to achieve the target point indicated.

Rzﬂe} Pain} Tasge! ’Pminl:]

)

T T

e Jwo o}ﬁe;mah’ue axes Canf'qum/fom Wikh

—ond __effockon focaked ol desiced

As shown 1n figure (a) that; although the target point has been reached by both of
alternative axis configurations, there 1s a difference in the orientation of the wrist
with respect to the point. We must conclude from this that the specification of the
joint coordinates of the robot does define only one point in a space that
corresponds to that set of coordinate values. Point specified in this fashion are said
to be joint coordinates. Accordingly, an advantage of defining robot program in
this way 1s that 1s simultaneously specifies the position and orientation of the end
effector at each point in the path.

Let’s consider the problem of defining a sequence of points in space. We will
assume that these points are defined by specifying the joint coordinates as
described above. Although, this method of specification will not affect the 1ssue we
are discussing here for a sake of simplicity, lets assume that we are programming a
point-to-point Cartesian robot with only two axes and only two addressable point 1s
one of the available points (as determine by the control revolution) that can be
commended to go to that point. Figure (b) shows the four points (possible points)
in the robot’s rectangular space. A program of this robot to start in lower left hand
corner and traverse the perimeter of the rectangle could be written as follows;

Axis - 2
A
1,2. 2.2
1.1 2,1 ”

e O - Robol ~ \askapace.

STEP MOVE COMMENTS

1 1.1 Move to lower left corner.
2 2,1 Move to lower right corner.
3 2,2 Move to upper right corner.
ul 1,2 Move to upper left corner.
5 iy Move back to start position.

The point designation corresponds to the X, y- coordinates positions in the
Cartesian axis system. In this example, using a robot with two orthogonal slides
and only two addressable points per axis, the definition of points in space
corresponds exactly with joint coordinate’s values.

CONCLUSION: Thus, we have studied the robot path planning using simulation
control software.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NO.: 4

NAME OF THE EXPERIMENT: Plan Mobile Robot Paths using RRT

OBJECTIVE: This experiment shows how to use the rapidly-exploring random
tree (RRT) algorithm to plan a path for a vehicle through a known map. Special
vehicle constraints are also applied with a custom state space. You can tune your
own planner with custom state space and path validation objects for any navigation
application.

THEORY:

Functions:

plannerRRT Create an RRT planner for geometric planning
plannerRRT Star Create an optimal RRT path planner (RRT*)
plannerAStarGrid A* path planner for grid map

plannerHybrid AStar | Hybrid A% path planner

Load Occupancy Map:

Load an existing occupancy map of a small office space. Plot the start and goal poses of the vehicle on

top of the map.
Code:

load("office_area_gridmap.mat”, "occGrid")
show(occGrid)

% Set the start and goal poses
start = [-1.0, 8.0, -pi];
goal = [14, -2.25, 0];

% Show the start and goal positions of the robot
hold on

plot(start(1l), start(2), 'ro')

plot(goal(l), goal(2), "mo')

% Show the start and goal headings

Po= 85

plot([start(l), start(l) + r*cos(start(3))], [start(2), start(2) + r¥sin(start(3))1,
lr_l)

plot([goal(l), goal(l) + r*cos(goal(3))], [goal(2), goal(2) + r*sin(goal(3))], 'm-*)
hold off

Occupancy Grid

Y [meters]

-5 o 5 10 15
X [meters]
Define State Space:

Specify the state space of the vehicle using a state Space Dubins object and specifying the state bounds.
This object limits the sampled staies to feasible Dubins curves for steering a vehicle within the state
bounds. A turning radius of 0.4m allows for tight turns in this small environment.

bounds = [occGrid.XWorldLimits; occGrid.YWorldLimits; [-pi pill;
ss = stateSpaceDubins(bounds);

ss.MinTurningRadius = ©.4;

Plan the Path:

To plan a path, the RRT algorithm samples random states within the state space and attempts to connect a
path. These states and connections need to be validated or excluded based on the map consitraints. The
vehicle must not collide with obstacles defined in the map.

Create a validator Occupancy Map object with the specified state space. Set the Map property to the
loaded occupancy Map object. Set a Valdiation Distance of 0.05m. This distance discretizes the path
connections and checks obstacles in the map based on this.

stateValidator = validatorOccupancyMap(ss);
stateValidator.Map = occGrid;
stateValidator.vValidationDistance = 0.05;

Create the path planner and increase the max connection distance to connect more states. Set the
maximum number of iterations for sampling states.

planner = plannerRRT(ss, stateValidator);

planner.MaxConnectionDistance = 2.0;

planner.MaxIterations = 30000;

Customize the Goal Reached function. This example helper function checks if a feasible path reaches the

goal within a set threshold. The function returns true when the goal has been reached, and the planner
stops.

planner.GoalReachedFcn = @exampleHelperCheckIfGoal;
function isReached = exampleHelperCheckIfGoal(planner, poalState, newState)

isReached = false;

threshold a1

if planner.StateSpace.distance{newState, goalState) < threshold
isReached = true;
end

end

Plan the path between the start and goal. Because of the random sampling, this example sets the rg seed
for consistent results.

rng(e, " 'twister')

[pthObj, solnInfo] = plan(planner, start, goal);

Plot the Path:
Show the occupancy map. Plot the search tree from the soln Info. Interpolate and overlay the final path.
Code:

show(oceGrid)
hold on

% Search tree

plot(solnInfo.TreeData(:,1), solnInfo.TreeData(:,2), '.-');

% Interpolate and plot path
interpolate(pthObj,308)
plot(pthObj.States(:,1), pthObj.States(:,2), 'r-', 'LineWidth', 2)

% Show the start and goal in the grid map
plot(start(l), start(2), 'ro’)
plot(goal(l), goal(2), 'mo')

hold off

Occupancy Grid

Y [meters]

X [meters]

Customize Dubins Vehicle Constraints:

To specify custom wvehicle constraints, customize the state space object. This example uses Example
Helper State Space One Sided Dubins, which is based on the state Space Dubins class. This helper class
limits the turning direction to either right or left based on a Boolean property, Go Left. This property
essentially disables path types of the dubins Connection object uses (see dubins Comnection. Disabled

Path Types).

Create the state space object using the example helper. Specify the same state bounds and give the new
Boolean parameter as true (left turns only).

% Only making left turns
goLeft = true;

% Create the state space

ssCustom = ExampleHelperStateSpaceOneSidedDubins(bounds, golLeft);
ssCustom.MinTurningRadius = ©.4;

Plan The Path:

Create a new planner object with the custom Dubins constraints and a validator based on those
constraints. Specify the same GoalReached function.

stateValidator2 = validatorOccupancyMap(ssCustom);
stateValidator2.Map = occGrid;
stateValidator2.ValidationDistance = 6.05;

planner = plannerRRT(ssCustom, stateValidator2);
planner.MaxConnectionDistance = 2.0;
planner.MaxIterations = 30000;
planner.GoalReachedFcn = @exampleHelperCheckITGoal;

Plan the path between the start and goal. Reset the mg seed again.

rng(®, ‘twister')
[pthObj2, solnInfo] = plan(planner, start, goal);

Plot the path:

Draw the new path on the map. The path should only execute left turns to reach the goal. This example
shows how you can customize your constraints and still plan paths using the generic RRT algorithm.

Code:

fipure
show(occGrid)

hold on

% show the search tree
plot(solnInfo.TreeData(:,1), solnInfo.TreeData(:,2), '.-"); % tree expansion

% draw path (after the path is interpolated)
pthobj2.interpolate(300)
plot(pthObj2.States(:,1), pthobj2.States(:,2), 'r-', 'LineWidth', 2)

% Show the start and goal in the grid map
plot(start(1l), start(2), 'ro')
plot(goal(1), goal(2), 'mo')

hold off

Occupancy Grid

Y [meters]

X [meters]

CONCLUSION: Thus, we have studied how to use the rapidly-exploring random
tree (RRT) algorithm to plan a path for a vehicle through a known map. Special
vehicle constraints are also applied with a custom state space. You are able to tune
your own planner with custom state space and path validation objects for any

navigation application.

THE NEOTIA UNIVERSITY
DEPARTMENT OF ROBOTICS & AUTOMATION

EXPERIMENT NO.: 5

NAME OF THE EXPERIMENT: Path Following with obstacle avoidance in
Simulink.

OBJECTIVE: To study about Path Following with obstacle avoidance in
Simulink.

THEORY:

This example uses a model that implements a path following controller with
obstacle avoidance. The controller recerves the robot pose and laser scan data from
the simulated robot and sends wvelocity commands to drive the robot on a given
path. You can adjust parameters while the model is running and observe the effect
on the simulated robot.

Sensor Models

Accelerometers

accelparams Accelierometer sensor parameters
Gyroscopes

allanvar Allan variance

Eyroparamns Gyroscope sensor parameters

Magnetometers

Magnetometer sensor-parameters

Magnetometer calibration coefficients

Satellite locations at specified ime
Satellite look angles from receiver and sateliite positions

Pzeudaranges between GNSS receiver and zateliites

Estimate GMNSS receiver position and velocity

skyplot Plot sateilite azimuth and elevation data

Other

‘gnssSensor Simulate GNSS to generate position and velocity readings
‘altimeterSensor Alfimeter simulation model

EgpsSensor GPS receiver simulation modei

imuSensor IMU simutation model

insSensor Inertial na\tigaﬁoﬂ system and GNSS/GPS simutation model
rangeSensor Simulate range-bearing sensor readings
wneelEncoderUnicycie Simulate wheel encoder senser readings for unicycle vehicle
wheelEncoderBicycle Simulate wheel encoder sensor readings for bicycle vehicle

whneslEncoderDifferentiaibrive

Simulate whee! encoder sensor readings for differential dri

wneelEncoderAckermann Simulate wheel encoder sensor readings for Ackermann ve
kinematicTrajectory Rate-driven frajectory generator

timescope Display time-domain signals

waypointTrajectory M?DMWWMOT

nmeaParser Parse data from standard NMEA sentences e NSS receivers
gpsdev Connect to a GPS receiver connected to

Locallzation and Pose Estimation

Multisensor Pesitioning

anrsFiltor

anrsiuiiiter

Ll el TTreet g e

S er, wirred 1z BT

AATLS and

rom o cmentany nitor

resandinegs

PaneaF VL ARG

ccompas= 1 rmgrreloroobor ssnd accoloronuebos soodinegs

imul Sizer ccelerometsr and gv c re r

R T | e i, PavEgatEon tiher

imsFilTorasync | Eslimale posce fom asyochionoos MARS and GPS dula

Insi iirerirrorstate Caumate pose from IMU., SrS.and r slar visusi < ChINC aats

tunarconlig

fassrmr - Rasd Paa-da—

ins=Filterponholonamic

Foshimatc posc trom MAHOE and G383 aata

Exlirmrale posce wills 1
Tilter tuner configuration cptions
wr EOss Cotimates Sunng inang

FParticie Filter

=tatecstimatorer

reszsles paan liche Fller slole eslirnmlon

S=tusTatelLztimats | Cxtract Dest state andg 1ce Trom parucies
T Pt vt Tt o oo
Scan Matching
matchScans Estimate pose between two laser scans
matchScansGrid Estimate pose between two lidar scans using grid-based search
matchScansiine Estimate pose between two laser scans using line features
transformScan . Transform laser scan based on relative pose
LidarScan | Create object for storing 2-D lidar scan
Monte Carlo

monteCariolocaliz

Localize robot using range sensor data and map

lidarScan

getPa

Create object for storing 2-D lidar scan
Get particles from localization algorithm
Create an odometry motion model

like

Create a likefinood field range sensor model

Create resampling poiw object with resampling settings

Pose Graphs

Create 2-D pose graph

posearaph

poseGraph3d . Create 3-D pose graph g
addPointlLandmari . Add landmark point node to pus_a;_gia—ﬂh
addRelativePose . Add relative pose to pose gra_ph y
edgsiodePairs . Edge node pairs in pose gnﬁ
edeelonstraints . Edge constraints in pase graph 2
edgeResidualErrars . Compute pose gmﬁuﬁﬁﬁi@idum BITors
findEdgeID Find edge ID of.edge

nodefstimates . FPoses uf?udes in pose graph
optimizePoseGraph . Optimize: nudeﬁmse graph
removeEdges . Remove loop clasure edges from graph

show Pﬁﬂ-ﬂﬂﬁew
Optimize pose graph and remove bad loop closures

trimloopCilozures

Whea| Encoder Odometry
whez2lEncoderfoometryhckernann Computs Ackermann vehicle odorary using wheed ancoder ficks and steenrc angle
Computz bicycle cdometry using whaal encoder ticks and steering angla

whezlEncoderDconetryDd fferansiallr Jie Domputa diferantial-drive vehicle odometry using wha2l encoder ticks

Computa uricycle odomelry using vinzel encoder 1oks and angular v ocity

whesiEncoderfocnetryBicyels

whezlEncoderfconetmdnicycla

Mapping

sinaryOccupancyMeg credte pecupancy gric with inarny values

sccapancylap create sccupancy map with arokabibetic velues
st canancyMap 3l wreate R0 accupancy map
nan_ayer Create map laver lor N-d mansional dala

multiLayertap . Vanage mubtiple map leyers

exportOccupancyMap3lD
petOccupancy
geiMapbata
importOccupancyMapiD
inflate

in

ertRay

4

in

m PointCloud

rt

in

Er

-

mapClutter
mapHaze

mave
occupancyMatrix
raycast

rayIntersection

syncliith
shou

updatebDccupancy

SLAM

lidersLaM

Ard~can

buildMap

remave lueufTosares
scansdndPoses

M

o

Sndnl

Motion Planning

Paths and Path Segments

nawvPath
dubinsConnection
dubinsHathsegmenRt
reegs=Shepplonnection

rrevdaSliepgpPo L Seanenl

Euild occupancy map from lidar scans
Check locaiions for free, occupied, or unknown values
Impaort an octree file as 30 occupancy map
Get occupancy value of locations
Refrieve data from map layer
Import an octree file as 30 occupancy map
Inflate each occupied grid location
Inseri ray from laser scan ohservation
Inseri 3-D points or point cloud observation into map
Generate map with randomly scattered chstacles
Generate random 2-0 maze map
Move map in world frame
Convert occupancy grid to double matite
Compute cell indices along a ray
Find intersection points of rays and occupied map cells
Set occupancy value of locations
Assign data to map fayer
. Syne map with overtlapping map
Show g.rid values in a figure

Integrate probability observations at locations

Merform locelization and mapping using idar s2ans
ard sean o lidar 51 AM map

Buid occupancy map from lda- scans

Remaove loop closures from pose grash

=xiract scans and comesponding poses

™ot 3cans and robot poses

“lanned path

Dubins path connection type

Dubing path segment connecting Wwo poses
Reads-Shepp path connection bypa

Reeds-Shepp path seqgmeni connecting bwo poses

START A ROBOT SIMULATOR:
Start a simple MATLAB-based simulator:

Type rosimit (ROS Toolbox) at the MATLAB command line. This creates a local
ROS master with network address (URI) of htp://localhost:11311.

Type Example Helper Simulink Robot ROS (‘Obstacle Avoidance’) to start the
Robot Simulator. This opens a figure window:

12

10

o

Y [meters]
(=)

0
) 2 - 5] 8 10 12

| Reset Simulation | X [meters]

|__ Randomize Location]

This MATLAB-based simulator 18 a ROS-based simulator for a differential-drive
robot. The simulator receives and sends messages on the following topics:

[t receives velocity commands, as messages of type geometry msgs/Twist, on
the /mobile base/commands/velocity topic

[t sends ground truth robot pose information, as messages of
type nav_msgs/Odometry. to the /ground truth pose topic

It sends laser range data, as messages of type sensor msgs/l.aserScan, to
the /scan topic

CONCLUSION: Thus have studied about path Following with obstacle
avoldance in Simulink.

Courtesy: https://i

