The Neotia University

7U THE NEOTIA
UNIVERSITY
A ST "9
M.Sc Bioinformatics
Practical Manual
Course No:

2021

Mr. Ranojit Kumar Sarker
Department of Biotechnology

The Neotia University

CONTENTS

i TITLES Page
No

1 Secondary structure analysis of protein. (Lab 3
1 & 2)

2 Tertiary protein structure analysis using 10
Rasmol. (Lab 3)

3 Kyto Encyclopedia of Genes and Genome 26
(KEGG) database (Lab 4)

4 Understanding PDB (Lab 5 & 6) 31

5 Perl Script (Lab 7, 8 , 9 & 10) 36

Experiment 1 & 2: Secondary Structure Analysis of Protein

Aim : To predict secondary structure of the give protein sequences

Introduction:

Protein secondary structure includes the regular polypeptide folding patterns such as helices, sheets,
and turns. The backbone or main chain of a protein refers to the atoms that participate in peptide
bonds, ignoring the side chains of the amino acid. The conformation of the backbone can therefore
be described by the torsion angles (also called dihedral angles or rotation angles) around the Phi
and the Psi of each residue. The helix structure looks like a spring. The most common shape is a
right handed a-helix defined by the repeat length of 3.6 amino acid residues and a rise of 5.4 A per

turn.

Secondary structure in proteins consists of local inter-residue interactions mediated by hydrogen
bonds, or not. The most common secondary structures are alpha helices and beta sheets. Other
helices, such as the 310 helix and & helix, are calculated to have energetically favorable hydrogen-
bonding patterns but are rarely if ever observed in natural proteins except at the ends of a helices
due to unfavorable backbone packing in the center of the helix. Other extended structures such as
the polyproline helix and alpha sheet are rare in native state proteins but are often hypothesized as
important protein folding intermediates. Tight turns and loose, flexible loops link the more "regular”
secondary structure elements. The random coil is not a true secondary structure, but is the class of

conformations that indicate an absence of regular secondary structure.

Amino acids vary in their ability to form the various secondary structure elements. Proline and
glycine are sometimes known as "helix breakers” because they disrupt the regularity of the o helical
backbone conformation; however, both have unusual conformational abilities and are commonly
found in turns. Amino acids that prefer to adopt helical conformations in proteins include
methionine, alanine, leucine, glutamate and lysine ("MALEK" in amino-acid 1-letter codes); by
contrast, the large aromatic residues (tryptophan, tyrosine and phenylalanine) and Cp-branched
amino acids (isoleucine, valine, and threonine) prefer to adopt B-strand conformations. However,
these preferences are not strong enough to produce a reliable method of predicting secondary

structure from sequence alone.

There are several methods for defining protein secondary structure (e.g. DEFINE, DSSP, STRIDE
(protein)).

Structural features of the three major forms of protein helices

Geometry attribute = a-helix Jqp helix m-helix
Residues per turn 36 3.0 44
Translation per residue 1.5 A (0.15 nm) 2.0 A (0.20 nm}:1_1 A(0.11 nm)
Radius of helix 2.3A(0.23nm) 1.9A (U.19nm}-2_8 A (0.28 nm)
Pitch 54 A (054 nm) 6.0 A (0.60mm) 4.8 A (0.48 nm)

1. To Compare the secondary structures of the following sequences and
comment on the result.

=1

MGLSDGEWQLVLNVWGKVEADIPGHGQE VLIRLFKGHPETLEKFDKFKHLKSEDEMKA
SEDLKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKY LEFISECIIQVLQSK
HPGDFGADAQGAMNKALELFRKDMASNY KELGFQG

=2

MDPKQTTLLCLVLCLGQRIQAQEGDFPMPFISAKSSPVIPLDGS VKIQCQAIREAYLTQL
MIIKNSTYREIGRRLKFWNETDPEFVIDHMDANKAGRYQCQYRIGHYRFRYSDTLELVVT
GLYGKPFLSADRGLVLMPGENISLTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL
GPVDLNVSGIYRCYGWYNRSPYLWSFPSNALELVVTDSIHQDY TTQNLIRMAVAGLVLV
ALLAILVENWHSHTALNKEASADVAEPSWSQOMCQPGLTFARTPSVCK

Methods:

1. Take the sequence from uniprot or copy the sequence if already given

2. Go to http://www.compbio.dundee.ac.uk/www-ipred/

3. Paste the sequence and click on make prediction

4. Wait for the software to predict the structure

5. Once Job is done. Save the output.

Results:

Output for seq 1 and 2:

Colour code for alignment:

Blue - Complete identity at a position

Shades of red - The more red a position is, the higher the level of conservation of chemical

properties of the amino acids

Inet - Final secondary structure prediction for query

jalign - Jnet alignment prediction

jhmm - Jnet hmm profile prediction

jpssm - Jnet PSIBLAST pssm profile prediction

Lupas - Lupas Coil prediction (window size of 14, 21 and 28)

Note on coiled coil predictions - = less than 50% probability

¢ = between 50% and 90% probability

C =greater than 90% probability

Jnet 25 - Jnet prediction of burial, less than 25% solvent accesibility
Jnet 5 - Jnet prediction of burial, less than 5% exposure

Jnet O - Jnet prediction of burial, 0% exposure

Inet Rel - Inet reliability of prediction accuracy, ranges from 0 to 9, bigger is better.

5

Sequence 1

PR T G e S il 21. P R 51. 1 1. 1. 1. 10L--mmmmm S B 131-- S [§ 'Y [151- :
Origieq . MELIDGEROLYL PLHGEVLIFLFKGHPETLEKFDKE S KRHGATVLTALEGIT ¥FL KEKIFVKYLEF I SECIT QAL FLF GENT
Triee HHHHEEE
Jheom
ipssm HHHEE.
Lupas 14

Tnet_t5 - - -EE-EE- -EE- -B- - -F- - EEEEEEEEEE- -EE-E--FF
B B--EB--F------- B--EB--F"

Tnet_ih D ommmmmmeees Bo-mmmmmm o

Inet Fel s 935465399900

2. Predict the secondary structure composition of O13837.

Methods:

1. Take the sequence from uniprot or copy the sequence if already given

2. Go to http://www.compbio.dundee.ac.uk/www-ipred/

3. Paste the sequence and click on make prediction
4. Wait for the software to predict the structure

5. Once Job 1s done . Save the output.

Results :

3.Find the secondary structure of the given sequence and compare with
the output of 2.

Method:

1. Run Blastx to determine protein.
2. Predict Secondary Structure.

3. Go to http://www.compbio.dundee.ac.uk/www-ipred/

4. Paste the sequence and click on make prediction

5. Wait for the sofiware to predict the structure

6. Once Job is done . Save the output.

>
ATGTCTTCTACTGCCACCGTTACTGAAAGCACTCATTTTTTTCCCAATGAGCCTCAAGGCCCTAGCATTA
AGACCGAAACTATTCCCGGTCCCAAAGGTAAGGCCGCTGCTGAAGAAATGTCCAAATACCACGACATC
AG

CGCTGTCAAGTTTCCTGTAGACTATGAAAAGTCCATTGGTAACTATCTTGTCGACTTGGATGGTAACGTT
CTCTTGGATGTTTACTCTCAAATCGCTACTATCCCCATTGGCTACAACAATCCTACTCTCCTCAAGGCTG
CCAAGTCGGACGAAGTCGCTACCATTTTAATGAACCGTCCTGCTTTGGGAAATTACCCT CCTAAGGAAT
G
GGCTCGTGTCGCTTATGAGGGTGCCATCAAATATGCCCCCAAGGGTCAAAAGTATGTTTACTTTCAAAT
G
AGTGGAAGTGATGCCAACGAGATTGCTTACAAGCTTGCTATGCTTCATCATTTCAACAACAAGCCTAGA
C CTACTGGTGATTACACTGCTGAAGAGAACGAGAGCTGCTTAAACAACGCTGCTCCTGGATCTCCCGAAG
T

TGCTGTICTCTCTTTCCGTCACTCTTTCCACGGACGTCTCTTITGGTTCTCTTTCCACTACTCGCTCCAAG
CCTGTTCACAAGCTTGGTATGCCTGCTTTCCCATGGCCTCAAGCTGATTTCCCTGCTITGAAGTATCCTT
TGGAAGAGCACGTCGAAGAGAATGCAAAGGAGGAGCAACGCTGCATTGACCAGGTCGAGCAAATTTTA
AC TAACCACCATTGCCCTGTCGTTGCCTGTATCATTGAGCCCATTCAATCTGAGGGTGGTGACAACCATGCC
TCTCCTGACTTTTTCCACAAGCTTCAAGCTACTTTGAAGAAGCATGATGTCAAGTTTATCGTCGATGAAG
TCCAAACTGGTGTCGGCTCTACCGGTACTTTATGGGCTCACGAGCAATGGAATTTACCCTATCCTCCTGA
CATGGTTACCTTTTCCAAGAAATTCCAGGCTGCCGGTATTTTCTATCATGATTTGGCTCTTCGTCCTCAT
GCTTATCAGCACTTCAATACTTGGATGGGTGACCCATTCCGTGCTGTTCAATCTAGATATATTCTTCAAG

AAATTCAAGACAAGGATCTCCTTAATAACGTCAAGTCTGTTGGCGATTTCTTGTATGCT GGACTTGAAG
A

GCTTGCTCGTAAGCACCCTGGCAAAATCAACAACCTCCGCGGTAAGGGAAAGGGTACTTTTATCGCTTG G

GATTGTGAGTCTCCTGCAGCCCGTGACAAATTCTGTGCTGACATGAGAATTAATGGTGT CAACATTGGT
G

GCTGTGGTGTAGCTGCTATTCGTCTTCGTCCTATGCTTGTATTCCAAAAGCACCATGCTCAAATCCTTCT
CAAGAAGATTGACGAATTGATTTA

Results:

Inference:
Schizosaccharomyces pombe chromosome I, complete replicon

Length=5579133

Features in this part of subject sequence:
4-aminobutyrate aminotransferase (GABA transaminase)
Score = 2632 bits (1425), Expect = 0.0

Identities = 1425/1425 (100%). Gaps = 0/1425 (0%)
Strand=Plus/Plus

Corresponding protein: O13837: 4-aminobutyrate ammotransferase
>gi|6016100/sp|O13837.1|GABAT SCHPO RecName: Full=4-aminobutyrate aminotransferase;
AltName: Full=GABA aminotransferase; Short=GABA-AT; AliName: Full=Gamma-amino-N-
butyrate transaminase; Short=GABA transaminase

Secondary structures are the same.

Experiment 3: Tertiary Structure Analysis

Alm: Determine the 3d structure of human gaba transaminase using homology modeling

Introduction:

The tertiary structure of a protein or any other macromolecule is its three-dimensional structure, as
defined by the atomic coordinates. Tertiary structure 1s considered to be largely determined by the
protein's primary structure - the sequence of amino acids of which it is composed. Efforts to predict
tertiary structure from the primary structure are known generally as protein structure prediction.
However, the environment in which a protein is synthesized and allowed to fold are significant
determinants of its final shape and are usually not directly taken into account by current prediction
methods. Most such methods do rely on comparisons between the sequence to be predicted and
sequences of known structure in the Protein Data Bank and thus account for environment indirectly,
assuming the target and template sequences share similar cellular contexts. In globular proteins,
tertiary interactions are frequently stabilized by the sequestration of hydrophobic amino acid
residues in the protein core, from which water is excluded, and by the consequent enrichment of
charged or hydrophilic residues on the protein's water-exposed surface. In secreted proteins that do
not spend time in the cytoplasm, disulfide bonds between cysteine residues help to maintain the
protein's tertiary structure. A variety of common and stable tertiary structures appear in a large
number of proteins that are unrelated in both function and evolution - for example, many proteins
are shaped like a TIM barrel, named for the enzyme triosephosphateisomerase. Another common
structure is a highly stable dimeric coiled coil structure composed of 2-7 alpha helices. Proteins are

classified by the folds they represent in databases like SCOP and CATH.

Homology modeling, also known as comparative modeling of protein refers to constructing an
atomic-resolution model of the "target” protein from its amino acid sequence and an experimental
three-dimensional structure of a related homologous protein (the "template"). Homology modeling
relies on the identification of one or more known protein structures likely to resemble the structure
of the query sequence, and on the production of an alignment that maps residues in the query

sequence to residues in the template sequence. It has been shown that protein structures are more

10

conserved than protein sequences amongst homologues, but sequences falling below a 20%
sequence identity can have very different structure. Homology modeling aims to build three-
dimensional protein structure models using experimentally determined structures of related family
members as templates. SWISS-MODEL workspace is an integrated Web-based modeling expert
system. For a given target protein, a library of experimental protein structures is searched to identify
suitable templates. On the basis of a sequence alignment between the target protein and the template
structure, a three-dimensional model for the target protein is generated. Model quality assessment
tools are used to estimate the reliability of the resulting models. Homology modeling is currently
the most accurate computational method to generate reliable structural models and is routinely used
in many biological applications. Typically, the computational effort for a modeling project is less
than 2 h. However, this does not include the time required for visualization and interpretation of the

model, which may vary depending on personal experience working with protein structures.

Swiss PDB viewer and swiss modeler are used as homology modeling
software and workspace.

Swiss-Pdb Viewer provides a user friendly interface allowing to analyze several proteins at the same

time.

1. Superimposition - structural alignments and compare their active sites or any other relevant parts
2. . Make amino acid mutations

3. Generate Hyvdrogen bonds

4. Calculate angles and distances between atoms

5. Tightly linked to Swiss-Model, an automated homology modeling server

6. Thread a protein primary sequence onto a 3D template

7. Build missing loops and refine sidechain packing

8. Read electron density maps and build into the density

9. Perform energy minimization

10. POV-Ray scenes can be generated for stunning ray-traced quality images

11

Swiss Modeller

The SWISS-MODEI, Workspace is a web-based integrated service dedicated to protein structure
homology modelling. It assists and guides the user in building protein homology models at different

levels of complexity.

Successful model building requires at least one experimentally determined 3D structure (template)
that shows significant amino acid sequence similarity with the target sequence. Building a
homology model comprises four main steps: identification of structural template(s), alignment of
target sequence and template structure(s), model building, and model quality evaluation. These
steps can be repeated until a satisfying modelling result is achieved. FEach of the four steps requires

specialized software and access to up-to-date protein sequence and structure databases.

Protein sequence and structure databases necessary for modelling are accessible from the workspace
and are updated in regular intervals. Software tools for template selection, model building, and
structure quality evaluation can be invoked from within the workspace. A personal working
environment (workspace), where several modelling projects can be carried out in parallel, is

provided for each user.

Methods:

1.load the TOHYV protein

2.select the chain A, in control panel and in the menu bar click the bulid option and select the inverse

selection and then click on the remove selected residues.

3. save it separately as TOHV A pdb

4, open the empty window again, and click the swissmodel to load the raw sequence.

5. open the pdb file through the import structures in the "File" menubar.

6. Click the magic fit, iterative magic fit from Fit option in the menubar.

7. Open the alignment window from the wind and select the residues which are not aligned.

8. Delete the residues which are not aligned using the Build option in the menubar and click the

remove residues and save it.

12

9. Now submit this to the swiss modelling request for the raw
10. Download the modelled protein and open in the swiss viewer.
11. In Bulid option, click the energy minimization.

12. open the seq-structure aligned protein (step 8) and energy minimized protein in the viewer and

click the improve fit
13, Calculate the RMS value from Fit option
14. Render the model in 3D view.

15. Use Protein Structure & Model Assessment Tools for analyzing the protein.

Result and Inference:

Query sequence (gabat.txt)

>sp|P80404/GABT HUMAN 4-aminobutyrate aminotransferase, mitochondrial OS=Homo
sapiens GN=ABAT PE=1 SV=3

MASMLLAQRLACSFOQHSYRLLVPGSRHISQAAAKVDVEFDYDGPLMKTEVPGPRSQELM
KQLNIIQNAEAVHFFCNYEESRGNYLVDVDGNRMLDLYSQISSVPIGYSHPALLKLIQQPQ
NASMFVNRPALGILPPENFVEKLROQSLLSVAPKGMSQLITMACGSCSNENALKTIFMWYR
SKERGQRGFSQEELETCMINQAPGCPDY SILSFMGAFHGRTMGCLATTHSKAIHKIDIPSF
DWPIAPFPRLKYPLEEFVKENQQEEARCLEEVEDLIVKY RKKKKTVAGIIVEPIQSEGGDN
HASDDFFRKLRDIARKHGCAFLVDEVQTGGGCTGKFWAHEHWGLDDPADVMTFSKKM
MTGGFFHKEEFRPNAPY RIFNTWLGDPSKNLLLAEVINIIKREDLLNNAAHAGKALLTGL
LDLQARYPQFISRVRGRGTFCSFDTPDDSIRNKLILIARNKGVVLGGCGDKSIRFRPTLVEFR
DHHAHLFLNIFSDILADFK

13

Sequences producng significant alignments;
LKA Cha A, 4Aminobutyrate-Aminobangeras From P okl
JER - Chain A, NO26a Mutant Fw ™4

51];dl: 10HV A Chain A, 4-Bmincbutyrate-Aminotransferase From Pig
pdb|10HVI|B Chaln B, 4-Aminobutyrate-Bminotransferase From Pig
Ddb]l“‘i")’ 8 Cham C, 4-Aminobutyrate-Aminotran3ferase From Pig

P9 more geguence tltlea
Length=472

Score = 959 bits (2479), Expect = 0.0, Method: Cempositional matrix adjust.
Identities = 453/472 (96%), Positiwves = 4647472 (98%), Gaps = 0/472 (0%)

Query 29 SQRARKVDVEFDYDGPLMKTEVPGPRSQEIMKQINTTONAFAVHFFCNYEESRGNYLVDV 88
SQARRKVIVEFDYDGFLMKTEVPGPRS+ELMKQLNI IONAEAVHFFCNYEESRGNYLVIV
Shjct 1 SQARAKVIVEFDYDGPIMKTEVEGERSRELMKQLNI IQNAEAVHFECNYEESRGNYLVDV 60

Query 8% DGNRMLDLYSQISSVPIGYSHPALLKLIQOPONASMFVNRPALGILPPENFVEKLRQSLL 148
DGNBMLOLYSQISS+PIGYSHPAL+KL+QOPON S F+NRPALGILPPENFVEKLR4SLL
Sbjct 61 DGNRMLDLYSQISSIPIGYSHPALVKLVOQPONVSTFINRPALGILPPENFVEKLRESLL 120

Query 149 SVAPKGMSQLITMACGSCSNENALKTIFMWYRSKERGQRGFSQEELETCMINQAPGCPDY 208
SVAPKGMSQLITMACGSCSNENA KTTFMWYRSKERGQ FS+EELETCMINQAPGCEDY
Sbjct 121 SVAPKGMSQLITMACGSCSNENAFKTIFMWYRSKERGQSAFSKEELETCMINQAPGCEDY 180

Query 205 SILSFMGAFHGRTMGCLATTHSKAIHKIDIPSFDWPIAPFPRLKYPLEEFVKENQQOEEAR 268
SILSFMGAFHGRTMGCLAT THSKATHKT DI PSFDWPIAPFFRLEY PLEEFVKENQREEAR
Sbjct 181 SILSFMGAFHGRIMGCLATTHSKATHKIDIPSFDWPIAPFPRLEYPLEEFVKENQOEERR 240

Query 269 CLEEVEDLIVKYREKKKTVAGIIVEPIQSEGGDNHASDDFFRKLRDIARKHGCAFLVDEV 328
CLEEVEDLIVEYRKKKKTVAGI IVEPIQSEGGDNHASDDFFRKLRDI+RKHGCAFLVDEV
Sbjct 241 CLEEVEDLIVKYREKFKIVAGIIVEPIQSEGGDNHASDDFFRELRDISREHGCAFLVDEV 300

Query 329 QTGGECTGKFWAREHWGLDDPADVMIFSKKMMTIGGFFHKEEFRPNAPYRIFNTWLGDPSK 388
QIGGE TGEFWAHEHWGLDDPADVMT FSKKMMT GGEFHKEEFRFNAPYRI FNTWLGDPSK
Sbjct 301 QIGGGSTGKFWAHEHWGLDDPADVMIFSKKMMIGGFFHKEEFRPNAPYRIFNIWLGDPSK 3860
Query 389 NLLILAEVINIIKREDLINNARHAGKRILTGLLDLQARYPQFISRVRGRGIFCSFDTPDDS 448
NLLTAEVINITKREDLL+NARHAGK LLTGLLDLQRARYPQFISRVRGRGTFCSFDTPD+S
Sbjct 361 NLLLAEVINITKREDLLSNARHAGKVLLTGLLDLORARYFQFISRVRGRGIFCSFDIPDES 420
Query 449 IRNKLILIARNKGVVLGGCGDKSIRFRPTLVFRDHHAHLFLNIFSDILADFK 500

IRNKL.I IARNKGV+LGGCGDESIRFRPTLVFRDHHAHL.FLNIFSDITADFK
Sbjct 421 IRNKLISIARNKGVMLGGCGDKSIRFRPTLVFRDHHAHLFINIFSDILADFK 472

Gabat.txt and 10HV A.pdb Modeled Structure at swisspdb viewer and swiss
modeler

14

15

Energy minimization score: -26789.707

RMSD: 0.07A

16

Quality information: Ligand information:
QMEAN Z-Score: -1.129

Global Model Quality Estimation:

QMEAN4 global scores: Local scores;
. Estimated absolute . Coloning by resi¢*

GMEANscored: model quality: Score components: B

< P S — i o g

— -—] .

- Fan—— \
0.695 A

i e o e 2

Z-Score: -1.129

QOMEAN4 global scores:

The QMEAN4 score is a composit”
potential terms (estimated mo
contributing terms are give-

for high-resolution exp~

Scoring function

C_beta inter

All-ator

S

17

Procheck: [+/-]

| input atom only.pdb

Ramachandran plot:

+| All Ramachandrans:
+| Chil-chiZ plota:
| Main-chain params:
| Side-chain params:
I
+| Besidue propertiea:
+|
+| 3 cis-peptides
| G-factors
I
| M/c bond lengths:100.
| Myc bood angles: 4o,
*#| Planar groups: g4.
I

+ May be worth investigating further.

The gmean score(-1.129) and procheck (rc plot : 99.5% in allowed region)score were

0 ¢ H E € K 3 0T M M A B ¥ orr——————————e
L 461 resaidues
28.8% core 10.2% allow 0.5% gener 0.5% diasall
10 labelled residues {(out of 4539)
2 labelled residuesa (out,of 296)
& better 0 inazide 0 worse
S ‘better 0 inszide 0 worse
Max.deviation: 0 Bad contacts: a
Bond len/angle: 4.4 Morris et al class: 1 1 2
Dihedrals: -0.082 Cowalent: 0.42 Orverall: i e B
0% within limits 0.0% highlighted
6% wilhin limilLs 0.4% highlighled
5% wWithin limits 10.5% highlighted 1 off graph

within ranges proving protein structure as stable.

Homoloey Modeline Using Modell

* Worth investigating further.

AIN: To do homology modeling for human gaba transaminase using MODELLER.

Introduction:

MODELLEE. iz uged for homology or comparative modeling of prot ein three-dimens onal

strudures. The user provides an aligmmert of 3 seguence to be modeled with known related

18

structures and MODELLER automatically calculates a model containing all non-hydrogen atoms.
MODELLER implements comparative protein structure modeling by satisfaction of spatial
restraints and can perform many additional tasks, including de novo modeling of loops in protein
structures, optimization of various models of protein structure with respect to a flexibly defined
objective function, multiple alignment of protein sequences and/or structures, clustering, searching
of sequence databases, comparison of protein structures, etc. MODELLER is available for

download for most Unix/Linux systems, Windows, and Mac.

MODELLER is used for homology or comparative modeling of protein three-dimensional
structures. The user provides an alignment of a sequence to be modeled with known related
structures and MODELLER automatically calculates a model containing all non-hydrogen

atoms.There are 5 modeling examples that the user can follow:

Basic Modeling. Model a sequence with high identity to a template. This exercise introduces the
use of MODELLER in a simple case where the template selection and target-template alignments

are not a problem.

Advanced Modeling. Model a sequence based on multiple templates and bound to a ligand. This
exercise introduces the use of multiple templates, ligands and loop refinement in the process of

model building with MODELLER.

Iterative Modeling. Increase the accuracy of the modeling exercise by iterating the 4 step
process. This exercise introduces the concept of MOULDING to improve the accuracy of

comparative models.

Difficult Modeling. Model a sequence based on a low identity to a template. This exercise uses
resources external to MODELLER in order to select a template for a difficult case of protein

structure prediction.

Modeling with cryo-EM. Model a sequence using both template and cryo-EM data. This exercise
assesses the quality of generated models and loops by rigid fitting into cryo-EM maps, and improves

them with flexible EM fitting.

Method:

1. Take query sequence whose structure needs to be modelled (e.g gabat) in PIR format.

19

2. Save the file with .ali extension in the bin folder of modeller.
3. Open build profile.py file. Change the append filename to the query sequence(gabat.ali).
4. Open the command line by clicking the '"Modeller’ link from the Start Menu in Windows.

5. Run the build_profile.py.This will search for potentially related sequences of known structure.
Two files are created build profile gabat.ali file and build profile gabat.prf file.

6. Open the build_profile.prf file and select the sequences which has an e value 0.0 .

7. Download the structures of'the selected protein from the PDB and save it in bin folder of modeller.
8. Open the compare.py file. Write the the name of the selected proteins.

9. Run compare.py command in command line. A compare.log output file is created.

10. Choose the sequence with high resolution and moderate identity.

11. Align the query sequence with the template by using align2d command.

12. Two output files are created .pap file and .ali file.

13. Open model single.py file .Use the above created .ali file .Run the model single.py command

in the command line.

14. 5 possible models are generated .Select the best model which has the lowest dope score.
15. Run evaluate model.py command for evaluating the selected model. Note the Dope score.
16. Run evaluate template.py command for evaluating the template. Note the Dope score.

17. Compare the dope score of both model and template.

Results and Inference:

Build_profile_gabat.ali (output for build_profile.py)

>P1;gabat

tcicricergabat: 0 @ 0: 1::-1.00:=-1.00

MASMLLAQRLACSFOHSYRLLYVPGSRHI SQAAAKNVDVEFDYDGPIMKTEVPGPRSQELMKOLNT I ONAEAY
HEBE

20

NYEESRGNYLVDVDGNRMLDLY SOISSVPIGY SHPALLKLIOOPONASMEVNRPALGI LPPENIVEKLROS
LISV
APKGMSOLITMACGSCSNENALKTI FMWYRSKERGORGE SQERELE TCMINQAPGCPDYSILSEMGAFHGRT
Masl
ATTHSKATHKIDIPSEFDWPTIAPFPRLKYPLEEFVKENQOEEARCLEEVEDLIVKY REKKKKTVAGITVEPTIQ
SEGG

DNHASDDEEFRKLRDIARKHGCAFLYVDEVQTGGGC TGKEWAHEHWSGLDDPADVMT ' SKEMMT GGEFHEKEEER
PNAP
YRIFNTWLGDPSKNLLLAEVINIIKREDLINNAAHAGKATLTGLLDLOARY POQET SRVRGRGTFCSEDTPD
DSIR

NKLILIARNKGVYVLGGCGDKSIRFRPTLVEFRDHHAHLFLNI FSDILADFK*

>Pl; 2catA
strugtlure:Zoatf: 28 : 404z :::-1.00:—~1.00

——FNYHEVLPMNTGVEAGETACKLARKW-—————————= € A VKGTOKYKA-—————————
KIVFAAGNEFWGRTLSAT

= TR TSY D—GREEE =—==MPG DT TE - ————— LEATERAT ————=
ODPNVAAFMVEPTIQGEAG

VVVPDPGYIMGYVRELCTRHOVLEIADET QTGLARTGRWLAVDYENYV--RPDIVLLG—
KALSGGLYDDDIMLTIKP

GEHGSTYGGNPLGCRVATI AATEVIEEENLAENADKLGI I LRNEIMKLES ———
DVVTAVRGKGLLNAIVIKEDWDA
WKVCLRLRDNGLLAKPTHGDI I RFAPPLINVIKEDETLRESIEIINKTILSE—*

>P1l; 1d7uA
structure:ld7ulA: 28: N7 " :-1.00:=1.00

——BERAKGSEVYDADGRAI LDEFSGOMSAYV LGHCHPEIVSYVIGEYAGKSGMLSRP——————————
VVDLATRLANI

TPPGLDRALLLSTGARSNEAAIRS——————————————————————— MAKIVTG——
KYETVGFAOQSWHGMT GARRA
SATY SKGVGPAAVGSHEAF — 2P T'PR——————— FERNGAYDYILAELDYAFDLI——

DROSSGNLAAFTAEP I LSSGG
ITELPDGYMAATLKREKCEARGMLLILDEAQTGVGRTGITMEACORDGY—
TPDILTLSKILGAGTSAATEERAHELG

YLFYTTHYVSDPLPAAVGLRVLDVYVORDGLVARANVMGDRLRRGLLDIMERE -
DCIGDVRGRGLLLGVEEPADGLG

AKITRECMNLGVOLPGMGG-VERIAPPLTVSEDEIDLGLSLLGOQAI ——— *
>P1;1s08A
a1 rerls0alh: 32: @ 2613 1:9-1.00:=-1.00

————AFRGCELILSDGRRLVDGMS SWWAATHGYNHPOLNAAMKS QT DAMSHYVMEGGI THAP ————
ATELCREKLVAM

21

TPOPLECVELADSGSVAVEVAMEMALOYWOAKGEARORY -———————— - —————
LTFRNGYHGDTEGAM

SYCDDNSMHSL—————- WKEAPAPOSR——MGEWDERDMYVGEAR——————— LMAAHRHES==
IAAVIIEPTIQGAGG

MEMYHPEWELKRTREKTCDREGTTLTADET ATGEGR TGKLEACEH-———————— = — S g —— ¥~ —————

=Pl; 2gsal
showetsEeslgsals S8u 1 338n ool l0e=1. U0

—FDRVEDAYAWDVDGNRY IDYVGIWGPALICGHAHPEVI EALKYVAMERGESE GAPC————
ATENLAEMYNDAVEST

B MVREVNSGTEACHE -~ AVLIRTMRAY T GERIK- = i~ iy~~~ = = — == == == =i

I IKFEGCYHGHADME' L

VERAGS-GVATT G PSS —— FEVP-—————— e
KKTTANTLTTEYNDLEAVEALFAENPGETIAGYVILEPTIVGNSG
FIVPDAGELEGLREITLEHDALLVEDEVMIGGGY OEREGY ———————~—
TPDLTTLGKGLPVGAYGGKREIAPAGP

MiEOR G ERSER B ANMTAGITCE BETSIER O PR TN M T 5 e et it i it

Pl lobvh
strigbliresleohvls: 1: @ «46l: 2ez=1,00 1,00

FDYDGPLMKTEVPGPRERELMKOLNI TONAEAVHETL'C
NYEESRGNYLVDVDGNRMLDLY SOT SST PIGY SHPATVELVOOPONVSTFINRPALGILPPENFVEKLRES
LLSY
APKGMSOLITMACGSCSNENAFKTI FMWYRSKERGOSAF SKEELE TCMINQAPGCPDY ST LSEMGAFHGRT
MGCL

ATTHSKATHKIDIPSFDWPTAPFERLKY PLEEFVKENQOEEARCTEEVEDLIVKYRKEKKKTVAGIIVERPIOQ
SEGG

DNHASDDEEFRKLRDISREKHGCAERLYDEVOQTGGES TGKEWAHEHWSLDDPADVMT E SKEMMT GGEFHEKEEER
PNAP
YRIFNTWLGDPSKNLLLAEY INI IKREDLLSNAAHAGKV ILLTGLLDLOARY PO L SRVRGRGTICSEDTPD
ESIR

NKLISTARNKGVMLGGCGDKSIRFRPTLYVEFRDHHAHLFLNIFSDI LADE —*

>Pl;1lsffA
structure NG, : 36: : 4247 :::-1.00:=1.00

——————————— DVEGREYLDFAGGIAVLNTGHLHPEKVVAAVEAQLKK———
LSHTCEFOVILAYEPYTLELCEIMNQKY

PGDFAKKTILIVT TGSEAVENAVKL —————— AR TR S = — e e et i
GTIAFSGAYHGRTHYTL
Q- ——<§ GEVNPY SAGMGLMPYVYRALYPCP--LHGISEDDA-—-TASTH-

RIFENDAAPEDIAATIVIEPVOGEGG

FYASSPAFMORLRALCDEHGIMLI ADEVOSGAGRTGTLFAMEQMGYV—-—-APDLTTEAKS—
I AGGEGRAEVMDAVAP

GGLGGTYAGNPT ACVAATLEVLEVEFEQENLLOKANDLGOKLKDGLLATAEKHPE -~
IGDVRGLGAMIAIELEFEDGDH

22

NEIVARARDEGLILLECEFNVILRILVELTIEDAQIROELEITISOCEFDEARES

Compare.log (output forr compare.py)

Sequence identity comparison (ID_TABLE):

Diagonal ... number of residues;
Upper triangle ... number of identical residues;
Lower triangle ... % sequence identity, id/min(length).
2o0atA @21d7uA @21s0aA @l2gsaA @21ohvA @21sffa @i
Z2o0atA @2 404 108 93 84 76 112|
1d7uA @2 27 431 86 76 86 117
1s0aA @l 23 20 427 79 72 107
2gsaA @2 21 18 19 427 63 97
lohvA @2 19 20 17 15 461 102
1sffAa @l 28 28 25 23 24 425

Weighted pair-group average clustering based on a distance matrix:

.——— 2o0atA @2.0 72.0000

o 1sffAa @1.9 72.5000

-———————————————————————————l ————— 1d7uA @2.0 78.0000

e — e o et 1s0aA @1.7 80.5000

I — — -~ 2gsaA @2.4 83.0625
e lohvA @2.3

+ + + +
83.5050 81.5137 79.5225 77.5312 75.5400 73.5488 71.5575
82.5094 80.5181 7/8.5269 76.5356 74.5444 72.5531

Align2d.ali

=Fl;lohvA

zstructureX:lcochv.pdk: 11 :t2:+46]1 ::A:MOL TID 1, MOLECULE 4-AMINCOBUTYRATE
AMINCTRAENSFERASE,; CHAIN A, B, <, D; FRAGMENT RESIDUES Z23-500; SYNONYM
EAMMA—AMINCO-IN-BUTYRATE TRANSAMINASE, EABA TRANSAMI EABA
AMINCTRANSFERASE, GABA-AT, GABA-T; EC Z2.6.1.1%:MCOL ID 15

OREANTISHM SCIENTIFIC SUS SCROFA; ORGANISM COIMMOIN PIG; COREANISM TAXETID
98Z3; ORZAN LIVER: Z.320:-1.00

FDYDGPLMETEY PSEPFRESRELMEQLINT TONAEAYVHEFFCHN Y EESREGNY LVDYVDENRMLDLY SQISSIPIGEY S

HPALVKLVQOPOQNVSTFINRPALGILPPENFVEKLRESLLSVAPKGMSOL I TMACGSCSHNENAFKTIFMWYRSKERGOSA
FSKEELET CMINQAP GCPDYSILSFMGAFHGRTMGCLATTHSKAIHKIDIPSFDWPIAPFPRLKYPLEEFVKENQOEEARCL

23

EEVEDLIVKYRKKKKTVAGIVERIQSEGGDNHASDD FFRKLRED ISRKHGCAFLVDEV QTG GG STGKEWAHEHWGLDDPA
DV TFSKKMMTG GFFHKEEFRPMNAPYRIFNTWLGDR SKNLLLAEWVINI KREDLLENAAHAG KWVLL TGLLD LOQARYPQFI S
RVRGRGTFCSFDTPDESIRNMKL STARNKGYMLGGCGDRSIRFRPTLYFRDHHAHLFLMIFSDILADF -*

»Pl; gabat

zequence tgakbat: @ @ oz z:: D.00: 0.00

MASMLLAO RLAC PO HE Y RLL VP RHISQALR AR VD VEF DY D PLMETEVEPGPREQEIMEOLNI T ONAEAY
HFFCNYEBESRGNYLVDVDGNRMLDLY 30T 33 VEPIGY SHPFALLELI OQOPONASMEPVNRPALGILFPEFENEVEE
LR LLEVAPKGMECOLITMACG SZCENENATLETIFMWY A2 FERGOQRGFEZQEELETCMINQAPGCPDY 2TILEF
MGEAFHGRTMG C LATTHE R ATHE IDIPSZFDW R IAPFFRLEYPLEEFVEENOO BEEARCLEEVEDLIVEYRKERK
ErVAGIIVERICOSEGEDNHASDDFFRELRD ITARKFHGCAFRLVDREVOTEGECTEEFWAHEHWE LDDPADVMTE
SERMMT e FEFHEEEFRPNAPY RIFNTWLGD PR KN L L LAEVINI IERED LN NAAHAG KFATLTELLDLOARY
POFIEZRVRGRGTFCEZFDTPDDE IRNELILIARNEGY VILGGCGDEEIRFRPTLVEF RDHHAHLEFLNI FEDI L
DEE™

Model-single. py (model generated gabat-1ohv.A with dope score)

<< end of ENERGY.
DOPE score : -55550.527344
>> Model assessment by GA341 potential

surface library
Pair library
Chain identifier

C:\Program Files\Modeller9v7/modlib/surf5.de
C:\Program Files\Modeller9v7/modlib/pair9.de

% sequence identity 2 95.878998
Sequence length - 500
Compactness = 0.092349
Native energy (pair) : -563.688055
Native energy (surface) : -3.234556
Native energy (combined) : -8.943275
Z score (pair) : -10.823216
Z score (surface) 2 -6.227564
Z score (combined) - -11.747523
GA341 score - 1.000000

>> summary of successfully produced models:
Filename mo1pdf DOPE score GA341 score

gabat.B99990001.pdb 2768.29199 -55550.52734 1.00000

Evaluate template.py

24

openf 224 > Open 1ohvA.profile
Energy of each residue is written to: lohvA.profile
The profile IS normalized by the number of restraints.

The profiles are smoothed over a window of residues: 13

The sum ol all numbers in Lhe lNile: -17.5030|

<< end of ENERGY.

DOPE score : -56652.394531

Dynamically allocated memory at finish [B,KiB,MiB]: 21326537 20826.695 20.339

2011/11/19 23:00:14
2011/11/19 23:00:29
15.56

Starting time
Closing time
Total CPU time [seconds]

Evaluate model.py

Using gabat as gquery sequence and 1ohv.A as a template “gabat BOO90O301.pdb(zabat-1ohvA)™
structure was modeled using modeler with dope score as -S5550.5273 4.

25

Experiment 4 : Understanding the metabolic network: Kyto
Encyclopedia of Genes and Genome (KEGG) database

Aim: To understand the network of metabolic pathways among the
living cells

Background :

The KEGG database project was initiated in 1995 by Minoru Kanehisa, Professor at the Institute
for Chemical Research, Kyoto University, under the then ongoing Japanese Human Genome
Program. Foreseeing the need for a computerized resource that can be used for biological
interpretation of genome sequence data, he started developing the KEGG PATHWAY database. It
is a collection of manually drawn KEGG pathway maps representing experimental knowledge
on metabolism and various other functions of the cell and the organism. Each pathway map
contains a network of molecular interactions and reactions and is designed to link genes in the
genome to gene products (mostly proteins) in the pathway. This has enabled the analysis called
KEGG pathway mapping, whereby the gene content in the genome is compared with the KEGG
PATHWAY database to examine which pathways and associated functions are likely to be encoded

in the genome.

According to the developers, KEGG is a "computer representation” of the biological system. It
integrates building blocks and wiring diagrams of the system — more specifically, genetic building
blocks of genes and proteins, chemical building blocks of small molecules and reactions, and wiring
diagrams of molecular interaction and reaction networks. This concept is realized in the following
databases of KEGG, which are categorized into systems, genomic, chemical, and health

information.

Systems information

The KEGG PATHWAY database, the wiring diagram database, is the core of the KEGG resource.
It is a collection of pathway maps integrating many entities including genes, proteins, RNAs,
chemical compounds, glycans, and chemical reactions, as well as disease genes and drug targets,
which are stored as individual entries in the other databases of KEGG. The pathway maps are

classified into the following sections:

26

+ Metabolism

e Genetic information processing (transcription, translation, replication and repair, ete.)
e Environmental information processing (membrane transport, sighal transduction, etc.)
e Cellular processes (cell growth, cell death, cell membrane functions, etc.)

e Organismal systems (immune system, endocrine system, nervous system, etc.)

e Human diseases

Drug development

The metabolism section contains aesthetically drawn global maps showing an overall picture of
metabolism, in addition to regular metabolic pathway maps. The low-resolution global maps can be
used, for example, to compare metabolic capacities of different organisms in genomics studies and
different environmental samples in metagenomics studies. In contrast, KEGG modules in the KEGG
MODULE database are higher-resolution, localized wiring diagrams, representing tighter
functional units within a pathway map, such as subpathways conserved among specific organism
groups and molecular complexes. KEGG modules are defined as characteristic gene sets that can
be linked to specific metabolic capactties and other phenotypic features, so that they can be used

for automatic interpretation of genome and metagenome data.

Another database that supplements KEGG PATHWAY is the KEGG BRITE database. It is
an ontology database containing hierarchical classifications of various entities including genes,
proteins, organisms, diseases, drugs, and chemical compounds. While KEGG PATHWAY is
limited to molecular interactions and reactions of these entities, KEGG BRITE incorporates many

different types of relationships.

Genomic information

Several months after the KEGG project was initiated in 1995, the first report of the completely
sequenced bacterial genome was published. Since then all published complete genomes are
accumulated in KEGG for both eukaryotes and prokaryotes. The KEGG GENES database contains
gene/protein-level information and the KEGG GENOME database contains organism-level
information for these genomes. The KEGG GENES database consists of gene sets for the complete

27

genomes, and genes in each set are given annotations in the form of establishing correspondences

to the wiring diagrams of KEGG pathway maps, KEGG modules, and BRITE hierarchies.

These correspondences are made using the concept of orthologs. The KEGG pathway maps are
drawn based on experimental evidence in specific organisms but they are designed to be applicable
to other organisms as well, because different organisms, such as human and mouse, often share
identical pathways consisting of functionally identical genes, called orthologous genes or orthologs.
All the genes in the KEGG GENES database are being grouped inte such orthologs in the KEGG
ORTHOLOGY (KO) database. Because the nodes (gene products) of KEGG pathway maps, as well
as KEGG modules and BRITE hierarchies, are given KO identifiers, the correspondences are
established once genes in the genome are annotated with KO identifiers by the genome

annotation procedure in KEGG.

Chemical information

The KEGG metabolic pathway maps are drawn to represent the dual aspects of the metabolic
network: the genomic network of how genome-encoded enzymes are connected to catalyze
consecutive reactions and the ehemical network of how chemical structures
of substrates and products are transformed by these reactions. A set of enzyme genes in the genome
will identify enzyme relation networks when superimposed on the KEGG pathway maps, which in
turn characterize chemical structure transformation networks allowing interpretation
of biosynthetic and biodegradation potentials of the organism. Alternatively, a set
of metabolites identified in the metabolome will lead to the understanding of enzymatic pathways

and enzyme genes involved.

The databases in the chemical information category, which are collectively called KEGG LIGAND,
are organized by capturing knowledge of the chemical network. In the beginning of the KEGG
project, KEGG LIGAND consisted of three databases: KEGG COMPOUND for chemical
compounds, KEGG REACTION for chemical reactions, and KEGG ENZYME for reactions in the
enzyme nomenclature. Currently, there are additional databases: KEGG GLYCAN for glycans and
two auxiliary reaction databases called RPAIR (reactant pair alignments) and RCLASS (reaction
class). KEGG COMPOUND has also been expanded to contain various compounds such

as xenobiotics, in addition to metabolites.

28

Health information

In KEGG, discases are viewed as perturbed states of the biological system caused by perturbates of
genetic factors and environmental factors, and drugs are viewed as different types of perturbates.
The KEGG PATHWAY database includes not only the normal states but also the perturbed states
of the biological systems. However, disease pathway maps cannot be drawn for most diseases
because molecular mechanisms are not well understood. An alternative approach is taken in the
KEGG DISEASE database. which simply catalogues known genetic factors and environmental
factors of diseases. These catalogues may eventually lead to mere complete wiring diagrams of

diseases.

The KEGG DRUG database contains active ingredients of approved drugs in Japan, the US, and
Europe. They are distinguished by chemical structures and/or chemical components and associated
with target molecules, metabolizing enzymes, and other molecular interaction network information
in the KEGG pathway maps and the BRITE hierarchies. This enables an integrated analysis of drug
interactions with genomic information. Crude drugs and other health-related substances, which are
outside the category of approved drugs, are stored in the KEGG ENVIRON database. The databases
in the health information category are collectively called KEGG MEDICUS, which also

includes package inserts of all marketed drugs in Japan.

Procedure:

1. Openthe KEGG website
2. https://www.cenome.jp/keco/?sess=ebfe2ad23e021e385401798¢803dd061

2. Select a particular protein (enzyme) name in the text box

3. On pressing search button the result page is displayed

4. Study the classification of the KEGG

5. Explore PATHWAY — pathway maps for cellular and organismal functions

6. Explore MODULE — modules or functional units of genes

29

7. Explore BRITE — hierarchical classifications of biological entities

8. Explore GENOME — complete genomes

9. Explore GENES — genes and proteins in the complete genomes

10. Explore ORTHOLOGY — ortholog groups of genes in the complete genomes
11. Explore COMPOUND, GLYCAN — chemical compounds and glycans

12. Explore REACTION, RPAIR, RCLASS — chemical reactions

13. Explore ENZYME — enzyme nomenclature

14. Explore DISEASE — human discases

15. Explore DRUG — approved drugs

16. Explore ENVIRON — crude drugs and health-related substances

Interpretation:

30

Experiment V & VI : PROTEIN DATA BANK (PDB)

Aim: To retrieve the structure of a protein and viewing it in RASMOL. viewer.

Description:

The Protein Data Bank (PDB) is a repository for the 3-D structural data of large biological
molecules, such as proteins and nucleic acids. The data, typically obtained by X-ray crystallography
or NMR spectroscopy and submitted by biologists and biochemists from around the world, can be
accessed at no charge on the internet. The PDB is overseen by an organization called the Worldwide
Protein Data Bank. The PDB is a key resource in areas of structural biology, such as structural
genomics. Most major scientific journals, and some funding agencies, such as the NIH in the USA,
now require scientists to submit their structure data to the PDB. If the contents of the PDB are
thought of as primary data, then there are hundreds of derived (i.e., secondary) databases that
categorize the data differently. For example, both SCOP and CATH categorize structures according

to type of structure and assumed evolutionary relations; GO categorize structures based on genes.

Procedure:

1. Open the PDB website

2. Type the protein name in the text box titled enter keyword or type the PDB ID
3. On pressing search button the result page is displayed

4. Choose the appropriate structure by double clicking the PDB ID

5. A web page is displayed with details about the structure

6. Download the structure file from the right hand corner of the webpage

7. Save the file as PDB file.

8. Open the RASMOL viewer to view the downloaded structure.

3

9. Interpret the results.

Interpretation:

HEADER CELT CROLE 21-DEC-04 1YC1
TELE CRYSTAL STRUCTURES OF HUMAN HSPSOALPHA COMPLEXED WITH
TITLE 2 DIHYDROXYPHENYLPYRAZOLES

COMPND MOL ID: 1;

COMEND 2 MOLECULE: HEAT SHOCK PROTEIN HSP 3S0-ALPHA;

COMEND 3 CHAIN: A;

COMEND 4 FRAGMENT: N-TERMINALWATP BINDING DOMAIN RESIDUES S$-223;
COMFEND 5 SYNONYM: HSF 8%;

COMEND 6 ENGINEEREDERYESH

COMEND 7 MUTATION: YES

SOURCE MOL ID: 1

SOURCE 2 ORGANTSM SCIENTIFIC: HOMO SAPIENS;

SOURCE 3 ORGANISM COMMON: HUMAN;

AUTHOR AJKREUSCH, S .HAN, A.BRINKER,V.ZHOU,H.CHOI,Y .HE, S.A.LESLEY,

AUTHGR 2 J.CALDWELL,X.GU

REVDAT il 22—FEEB-85 1yg1 0
JENL AUTH A KREUSCH, S.HAN, A.BRINKER,V.ZHOU, H.CHOTI, Y .HE,
JENL AUTH 2 S.A.LESLEY,J.CALDWELL,X.GU

32

REMARK

REMARK

REMARK

REMARK

REMARK

DBREF

SEQADYV

SEQADV

SEQADV

SEQADV

SEQADV

SEQADV

SEQADV

SEQADV

SEQADV

SEQRES

SEQRES

SEORES

SEQRES
FORMUL

HELIX

HELIX

HELIX

HELIX

HELIX

HELIX

£ RESOLUTION EANGE HIGH

(ANGSTRCMS) : 1.70

3 RESOLUTION RANGE LOW (ANGSTROMS) : 47.18
3 DATA CUTOEF (SIGMA(F)) : 0.000
3 DATA CUTOFF HIGH (ABS(F)) : 1654342.920
3 R VALUE (WORKING SET) : 0.190
1YCcl A 236 SWS PO7900 HS9A HUMAN 8 235
1YCl MET A -27 SWS P07900 CLONING ARTIFACT
1YCl ARG A =26 SWS P07900 CTONING ARTIFACT
1YCl GLY A =25 SWS P07900 CTONING ARTIFACT
1YCl SER A -24 SWS P07900 CLONING ARTIFACT
1YCl HIS A =23 SWS P07900 CLONING ARTIFACT
1YCl HIS A -22 SWS P07900 CLONING ARTIFACT
1YCcl HIS A -21 SWS P07900 CLONING ARTIFACT
1YCl HIS A -20 SwWS PB07900 CLONING ARTIFACT
1YCl HIS A -19 SwWS BO7900 CLONING ARTIFACT
1 A 264 MET ARG GLY SER HIS HIS HIS HIS HIS HIS GLY MET ALA
2 A 264 SER MET THR GLY GLY GLN GLN MET GLY ARG ASP LEU TYR
3 A 264 #/ASP RSP ASP ASP LYS ASP ARG TRP GLY SER ASP GLN PRO
4 A 264 MET GLU GLU GLU GLU VAL GLU THR PHE ALA PHE GLN ALA
3 HOH *307 (H2 O1)
1 “1weIN A 23 THRA 36 1
2 2 GLUA 42 ASPA 66 1
324 3 PROA 67 GLY A 73 5
4 4 THR A 9% THR A 109 1
5 5 @gLF & T ALE K 1gd 1
6 6 ASP A 127 GLY A& 135 5

33

14

25

L

i}

HELIX

HELIX

HELIX

HELIX

SHEET

SHEET

SHEET

SHEET

SHEET

SHEET

SHEET

SHEET

ERMESTHL

ATOM

ATOM

ATOM

ATOM

ATOM

ATOM

ATOM

ATOM

HETATM

HETATM

HETATM

HETATM

HETATM

10

s

1688

1695

1700

i 1M1

1702

g8 SER A

S GLU A

10 GLU A

13e

140

Loz

195

A 8 VAL A 17

6ll

CA

CB

Ciz

CD

OEl

SER

TYR

ATA

GLY

THR

ILE

ILE

B89.

GLU

GLU

GLU

GLU

GLU

GLU

GLU

GLU

HOH

HOH

HOH

HOH

HOH

A 1e9
A 1le0
A 145
A 183
A 88
A T8
& 2L8
ooo
& 15
A 1B
A &
e 15
X 1o
S
& A5
A 1B
16
1%
18
i
20

TYR A

VAL

LEU A

SER A

ALA

THR

SER

LYS

LEU

ASP

ASN

LEU

88.3

A

86

14.

1 5

=1.9.

129 &
144 1
IgE B
211 L

21 0
I =1
164 -1
183 «—1
T

S5 =i

83
e L
90.00

a > o g
.254 10,
2598 11
i) dlallee
Y Sl
i35 L@:
e 0L
2 I i
685 44,
SO0 BB
CEO 2y
432 24,
~SE B

34

O PHE

N ALA

N VAL

o TILE

N ILE

N ILE

o THR

50.00

.464

gl =

g5l =

25

565

641

753

871

698

080

182

BES

417

2. 170

ALLEl

A 150

A 187

R, 2lY

80.00

=i 007

10 il

10.244

=955 28

= OLEEH

=B 3 .29

=8 0P

=B EE

2876

-5.540

7,448

7.633

=10 N0

g8 2 2

PHE

ARG

LRE

THR

VAL

THR

LEU

2

49,

49,

47,

47,

52

26y

58

58 .

17

2

22

16.

1S

96

Tz

4z

68

26

Zi

e

81

.46

43

.34

80

80

20

1.8

162

145

186

80

g0

L3

HETATM

HETATM

HETATM

HETATM

HETATM

HETATM

CONECT

CONECT

STOLIEAL

CONECT

CONECT

CONECT

CONECT

STOLIEAL

END

1703

1704

1705

17086

1707

1708

1657

1658

1655

1eac0

16l

leeZ

1663

lead

1656

1657

1658

1659

1657

lesl

legZ

les56

Result analysis :

HOH

HOH

HOH

HOH

HOH

HOH

1658

1655

1660

legl

1660

1663

lecd

1663

24

22

23

24

25

26

1661

1662

1665

i

=B .

-14.

BEH

662

464

.786

.108

L6775

20

Bk

Lg%

38,

2

26.

35

218

TlE

g9z

004

222

805

1578

=] B

= 2,

21

« 1558

: 131

. BT

SRS

899

.00

.00

<00

.06

.00

a0

20 .

1S,

G

2

g .

18

66

67

g2

@0

4z

03

Exp 7-A: Basic mathematical operations

Aim: To perform Basic mathematical operations using PERL.

Program: (Example)

#l/usr/bin/perl -w

$x=10;

print™\tThe value of first variable,x is : $x\n™;

$v=5.

print”\tThe value of second variable,y is : $y\n™;
$sum=$x+9%y;

print”\tThe sum of Two variables is : $sum\n’;
$dift=$x-$y.

print”\tThe difference of Two variables is @ $diffin™;

exit;

Output :

The value of first variable,x 1s : 10
The value of second variable,y is : 5
The sum of Two variables is : 15

The difference of Two variables is : 5

Exercise:

36

1. Print different types of numbers on the Screen.
2. Print Binary & Hexadecimal numbers using perl seript.

3. Write perl script to swap values.

Exp 7-B : Basic mathematical operations

Aim: To perform Basic mathematical operations using PERL.

Program :

#l/usr/bin/perl -w

$x=10;

print™\tThe value of first variable,x is : $x\n™;

$y=5;

print”™\tThe value of second variable,y is : $y'\n™;
$sum=%x+8y;

print”\tThe sum of Two variables is : $sum\n™;
$diff=$x-$y.

print”\tThe difference of T'wo variables is : $diffin™;

exit;

Output :

The value of first variable,x is : 10
The value of second variable,y is : 5
The sum of Two variables 1s : 15

The difference of Two variables is : 5

37

Exp 7-C: Concatenating DNA

Aim: To Concatenating DNA sequences using PERL

Program:

#l/usr/bin/perl -w

Concatenating DNA

Store two DNA fragments into two variables called SDNA1 and SDNA2
$DNA1 ="ACGGGAGGACGGGAAAATTACTACGGCATTAGC",
$DNA2 ='ATAGTGCCGTGAGAGTGATGTAGTA",

Print the DNA onto the screen

print "Here are the original two DNA fragments:inin";

print $DNAT1, "n";

print $DNA2, "n'\n";

Concatenate the DNA fragments into a third variable and print them

Using "string interpolation”

$DNA3 ="$DNA1SDNA2";

print "Here is the concatenation of the first two fragments (version 1):\n\n";
print "$DNA3\n'\n";

An alternative way using the "dot operator":

Concatenate the DNA fragments into a third variable and print them
$DNA3 = SDNAL . $DNA2;

print "Here is the concatenation of the first two fragments (version 2):\n\n";
print "SDNA3n\n";

print "Here is the concatenation of the first two fragments (version 3):\n\n";
print $DNA1, $DNA2, "\n";

exit;

38

Output :
Here are the original two DNA fragments:

ACGGGAGGACGGGAAAATTACTACGGCATTAGCATAGTGCCGTGAGAGTGATGTAGT
A

Here is the concatenation of the first two fragments
(version 1):

ACGGGAGGACGGGAAAATTACTACGGCATTAGCATAGTGCCGTGAGAGTGATGTAGT
A

Here is the concatenation of the first two fragments
(version 2):

ACGGGAGGACGGGAAAATTACTACGGCATTAGCATAGTGCCGTGAGAGTGATGTAGT
A

Here is the concatenation of the first two fragments
(version 3):

ACGGGAGGACGGGAAAATTACTACGGCATTAGCATAGTGCCGTGAGAGTGATGTAGT
A

Exp 7-D: Transcribing DNA into RNA
AiIm: To Transeribe DNA sequence into RNA sequence using PERT.

Program :

#l/usr/bin/perl -w

Transeribing DNA into RNA

The DNA

$DNA = 'ACGGGAGGACGGGAAAATTACTACGGCATTAGC!,
Print the DNA onto the screen

print "Here is the starting DN A:\n\n";

39

print "S§DNAwn\n";

Transcribe the DNA to RNA by substituting all T's with U's.
SRNA = $DNA;

$RNA =~ s/T/U/g;

Print the RNA onto the screen

print "Here is the result of transcribing the DNA to
RNA:\n\n";

print "SRNA\n";

Exit the program.

exit;

OutPut :

Here is the starting DNA:
ACGGGAGGACGGGAAAATTACTACGGCATTAGC
Here is the result of transcribing the DNA to RNA:

ACGGGAGGACGGGAAAAUUACUACGGCAUUAGC

40

Exp 8-A: Calculating the reverse complement of a strand of DNA

Aim: To calculate the reverse complement of a strand of DNA using PERL

Program :

#l/usr/bin/perl -w

Calculating the reverse complement of a strand of DNA
$DNA ='ACGGGAGGACGGGAAAATTACTACGGCATTAGC
Print the DNA onto the screen

print "Here is the starting DN A:\n\n";

print "$DNAn\n";

Calculate the reverse complement

Warning: this attempt will fail!

First, copy the DN A into new variable $revcom

(short for REVerse COMplement)

Notice that variable names can use lowercase letters like
"reveom” as well as uppercase like "DNA". In fact,

lowercase i$ more common.

=

It doesn't matter if we first reverse the string and then

do the complementation; or if we first do the
complementation

and then reverse the string. Same result each time.

So when we make the copy we'll do the reverse in the same
statement.

#

$reveom = reverse $DNA;

=

41

Next substitute all bases by their complements,

A->T, T->A, G->C, C->G

-

$reveom = s/A/T/g;

$reveom = s/T/A/g;

$reveom = s/G/C/g;

$revecom =~ s/C/G/g;

Print the reverse complement DNA onto the screen

print "Here is the reverse complement DNA:\n\n";

print "$revcom'n";

-

Oh-oh, that didn't work right!

Our reverse complement should have all the bases in it,
since the

original DNA had all the bases--but ours only has A and G!
=

Do you see why?

=

The problem is that the first two substitute commands
above change

all the A's to T's (so there are no A's) and then all the

T's to A's (so all the original A's and T's are all now

A's).

Same thing happens to the G's and C's all turning into G's.
-

print "\nThat was a bad algorithm, and the reverse complement was wrong!'\n";

print "Try again ... \n'\n";

42

Make a new copy of the DNA (see why we saved the original?)
$reveom = reverse $DNA;

See the text for a discussion of tr///

$reveom =~ tr/ ACGTacgt/ TGCAtgca/;

Print the reverse complement DNA onto the screen

print "Here is the reverse complement DNA:\n\n";

print "$revcom'n";

print "\nThis time it worked!\n\n";

exit;

Output :

Here is the starting DNA:
ACGGGAGGACGGGAAAATTACTACGGCATTAGC

Here is the reverse complement DNA:
GGAAAAGGGGAAGAAAAAAAGGGGAGGAGGGGA

That was a bad algorithm, and the reverse complement was wrong!
Try again ...

Here is the reverse complement DNA:
GCTAATGCCGTAGTAATTTTCCCGTCCTCCCGT

This time it worked!

Exp 8-B: Reading protein sequence data from a file
Aim: To Read a protein sequence data from a file using PERL

Program :

#!/usr/bin/perl -w

43

Reading protein sequence data from a file, take 2

The filename of the file containing the protein sequence
data

$proteinfilename = 'NM_021964fragment.pep";

First we have to "open" the file, and associate

a "filehandle" with 1t. We choose the filehandle

PROTEINFILE for readability.

open(PROTEINFILE, $proteinfilename);,

Now we do the actual reading of the protein sequence data
from the file,

by using the angle brackets < and > to get the input from
the

filehandle. We store the data into our variable $protein.
#

Since the file has three lmes, and since the read only

Is

returning one line, we'll read a line and print it, three
times.

First line

$protein = <PROTEINFILE>,

Print the protein onto the screen

print "\nHere is the first line of the protein file:\n\n";
print $protein;

Second line

44

$protein = <PROTEINFILE>;

Print the protein onto the screen

print "\nHere 1s the second line of the protein file:\n\n";
print $protein;

Third line

$protein = <PROTEINFILE>,

Print the protein onto the screen

print "\nHere 1s the third line of the protein file:\n\n";
print $protein;

Now that we've got our data, we can close the file.
close PROTEINFILE;

exit;

Output:

Here 1s the first line of the protein file:

MNIDDKLEGLFLKCGGIDEMQSSRTMVVMGGVSGQSTVSGELQD

Here 1s the second line of the protein file:

SVLQDRSMPHQEILAADEVLQESEMRQOQDMISHDELMVHEETVKNDEEQM

ETHERLPQ
Here 1s the third line of the protein file:

GLQYALNVPISVKQEITFTDVSEQLMRDKKQIR

45

Exp 9-A: Conditional Statement
Aim: To use the conditional statements in PERL

Program

#1/usr/bin/perl -w

1f-elsif-else

$word = 'MNIDDKL';

1f-elsif-else conditionals

if($word eq 'QSTVSGE") {

print "QSTVSGE\n";

3 elsif($word eq ' MRQQDMISHDEL") {
print "MRQQDMISHDEL\n";

} elsif ($word eq MNIDDKL') {

print "MNIDDKL--the magic word!\n";
} else {

print "Is \"$word\" a peptide? This program is not
sure.\n";

}

exit;

Output :
MNIDDKL--the magic word!

46

Exp 9-B: REGULAR EXPRESSIONS

Program 1

#l/usr/bin/perl

print “Enter your DNA Sequence : ™,

$DNA = <>;

chomp SDNA;

print “EcoRI site found!” if $DNA =~/GAATTC/;

printSDNA;

Program 2

#l/usr/bin/perl

$string = "do the words heaven and eleven match?";
if ($string =~ /even/)

{

print "A match was found.\n";

b

else

{

print "No match was found.\n";

b

Program 3 : Array operations

Aim: To perform various array operations using PERL

47

1: Pop operation using arrays

#l/usr/bin/perl —w

(@bases = ('A', 'C",'G", '"T");

$basel = pop (@bases;

print "Here's the element removed from the end: ";
print $basel, "nin";

print "Here's the remaining array of bases: ";

print "(@bases";

OutPut :
Here's the element removed fromthe end: T

Here's the remaining array of bases: A C G

2 :Shift operation on arrays

#l/usr/bin/per]l —w

(@bases = (A", 'C,'G", 'T");

$base2 = shift @bases;

print "Here's an element removed from the beginning: ";
print $base2, "nin";

print "Here's the remaining array of bases: ";

print "@bases";

Output :

Here's an element removed from the beginning: A

Here's the remaining array of bases: CG T

3: Unshift operations on arrays

48

#l/usr/bin/perl —w

@bases = (A", 'C','G", "T"),

$basel = pop (@bases;

unshift (@bases, $basel);

print "Here's the element from the end put on the beginning:";
print "(@bases\nin";

Output:

Here's the element from the end put on the beginning: T A C G
4: Push operation on arrays

#l/usr/bin/perl —w

@bases = (A", 'C','G", "T"),

$base2 = shift @bases;

push ((@bases, $base2),

print "Here's the element from the beginning put on the end:";
print "@bases\nin";

Output:

Here's the element from the beginning put onthe end: CG T A

5: Reverse of an array
#l/usr/bin/per]l —w

(@bases = (AL, 'C', 'G", "T");
(@reverse = reverse (@bases;

print "Here's the array in reverse: ™;

print “@reverse\n'\n”

OQutput:

Here's the array in reverse: TG C A

49

6: Length of an array

#l/usr/bin/per]l —w

@bases = (A", 'C','G", "T");

print "Here's the length of the array: ";
print scalar (@bases, "\n";

Output:

Here's the length of the array: 4

7: Splicing of an array

#l/usr/bin/per]l —w

(@bases = (A', 'C', 'G", 'T");

splice ((@bases, 2, 0, 'X"),

print "Here's the array with an element inserted after the
2nd element: ";

print "(@bases\n";

Output:

Here's the array with an element inserted after the 2nd

element: ACXGT

50

Exp 10-A: Searching for motifs

Aim: To search for a motif in a DNA sequence using PERL
Program :

#l/usr/bin/perl -w

Searching for motifs

Ask the user for the filename of the file containing

the protein sequence data, and collect it from the
keyboard

print "Please type the filename of the protein sequence
data: ";

$proteinfilename = <STDIN>;

Remove the newline from the protein filename
chomp S$proteinfilename;

open the file, or exit

unless (open(PROTEINFILE, Sproteinfilename)) {
print "Cannot open file \"$proteinfilename\"\n'\n";
exit;

¥

Read the protein sequence data from the file, and store
it

into the array variable @protein

@protein = <PROTEINFILE™>;

Close the file - we've read all the data into (@protein
Now.

close PROTEINFILE;

Put the protein sequence data into a single string, as

it's easier

51

to search for a motif in a string than in an array of
lines (what if the motif occurs over a line break?)
$protein = join(", @protein);

Remove whitespace

$protein =— s/\s//g;

In a loop, ask the user for a motif, search for the motif,
and report if it was found.

Extt if no motif is entered.

do {

print "Enter a motif to search for: ",

$motif = <STDIN>;

Remove the newline at the end of $motif

chomp $motif;

Look for the motif

if ($protein =~ /$motif/) {

print "I found it!\nin";

}else {

print "I couldn''t find it.\n\n";

b

exit on an empty user input

3 until ($Smotif = /Ms*$/);

exit the program

exit;

Output :

Please type the filename of the protein sequence data:

52

NM 021964fragment.pep

Enter a motif to search for: SVLQ

I found it!

Enter a motif to search for: jkl

I couldn't find it.

Enter a motif to search for: QDSV

I found it!

Enter a motif to search for: HERLPQGLQ
I found it!

Enter a motif to search for:

I couldn't find it.

Exp 10-B: A subroutine to append ACGT to DNA

Aim: To append ACGT to DNA using subroutine

Program :

#l/usr/bin/perl -w

A program with a subroutine to append ACGT to DNA
The original DNA

$dna ='CGACGTCTTCTCAGGCGA";

The call to the subroutine "addACGT".

The argument being passed in is $dna; the result is saved

53

in $longer dna

$longer dna = addACGT($dna);

print "I added ACGT to $dna and got $longer dna‘n'n";
exit;

Here is the definition for subroutine "add ACGT"

sub addACGT {

my($dna) =@ _;

$dna .='ACGT";

return $dna;

}

Output:
I added ACGT to CGACGTCTTCTCAGGCGA and got

CGACGTCTTCTCAGGCGAACGT

54

