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Chapter 5
Development of Ionome (Salt-Omic)
for the Varietal Improvement and Food
Security of the Coastal Region of India

Bidisha Mondal

Abstract Global agricultural productivity is regulated by soil salinity, one of the1

major abiotic constraints faced by the farmers, growers and breeders. The genomic,2

transcriptomics, proteomics and metabolomic salt profile of coastal plants could3

provide an insight into the mechanisms by which the differential performance is4

regulated in contrasting varieties of a single crop. This study proposes the construc-5

tion of an Ionome suitable for the coastal saline region for sustainable food secu-6

rity. This study focuses on functional genomic studies of saline belt crops and7

meta-analysis of the information for proposed Ionome (Salt-Omic) development.8

In the salt-genome segment, the appropriate genes were identified and categorized9

covering ion-transport-genes, senescence-associated genes, molecular-chaperones,10

dehydration-genes. Proteome provides additional information on protein coding11

sequences, endogenous small molecules. The identified genes, proteins and signalling12

pathways could form an Ionome repository for molecular crop breeding programmes.13

The primary bioinformatics web source along with a customized database for several14

crops were found useful for identifying essential biomolecules. The study was able15

to assist in the formation of agri-ionome for the improvement of coastal crops. The16

sequential integration of agri-engineering model along with Omic details could be17

utilized for the construction of an explicit repository for molecular plant breeders in18

a way similar to AMBAB, LIS, Pulsechip or RiceMetaSys.19

Keyword Ionome (Salt-omic) · Molecular crop-improvement · Food security ·20

Breeder focused-database21

5.1 Introduction22

Salinity problem creates massive impact on food security of our country. Enhanced23

crop productivity and area augmentation are the two focus area that could assist in24

sustainable food security. India requires 311 million food grains for its exceedingly25
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2 B. Mondal

growing population of approximately 1.43 billion in 2030. Intensive cropping, biodi-26

versity loss, abundant fertilizer application, ground water depletion, deforestation,27

increased urbanization has led to an extraordinary increase in soil salinization in28

more than 6.74 million ha of land in the country. Advanced soil reclamation using29

novel technologies and strategies recovered and increased the crop area transforming30

the affected 2.18 million hectares of salt affected soil (Kumar and Sharma 2020).31

Inclusive technologies of gypsum-based treatment of sodic soil, subsurface drainage32

of saline soil, phytoremediation, bio-remediation, agro-forestry, novel breeding tech-33

niques could increase food security, income elevation and rural employability. The34

selection, retention and promotion of advanced breeding technologies could boost35

crop productivity aiding food security. The economically important varieties of rice,36

sunflower, sesame, moong, mustard, jute, vegetables and betel leaf grown in the37

coastal saline belt of West Bengal, India are susceptible to salinity stress. Plants can38

tolerate salinity stress by processes including salt exclusion or inclusion. The most39

predominant form of salt stress involving NaCl causes nutrient and metabolic imbal-40

ance. Increased salt stress leads to ion toxicity affecting the water retention capacity41

of the plant.42

The breeders face constant challenges in development of new varieties resilient to43

extreme abiotic stresses including salinity. In such a condition unique breeding tech-44

niques will focus on expanding the gene pool or introspection of the present gene pool45

to identify some potential well performers. In recent times a comprehensive bioin-46

formatics study involving inclusive approach covering all omic information could be47

applied for developing dynamic breeding strategies. The inclusion of high throughput48

techniques of DNA/RNA sequencing, microarray data and advanced proteomics49

could help the breeders to enter inside the unexplored territories of molecular crop50

advancement programme.51

In salt and salinity management a number of agri-engineering computational52

models were already been invented and used. Scientists have analysed water flow53

and salt flow processes and developed scientific and engineering models for salinity54

management. On the basis of scope of application two models, basin model and field-55

scale models were developed by soil scientists, agri-engineers and agri-informatic56

professionals. LEACHC, SWAP, SOWACH, HYDRUS and UNSATCHEM were57

largely used for analysis of water flow, salt flow and plant performance. Among58

these models SWAP software package involves one-dimensional vertical transport59

of water, solute and heat and could predict crop yield. The SWAP model was effective60

in irrigation application and effective yield return studies in cotton (Pan et al. 2020).61

SOWACH, a third generation salinity management model was written using62

QBASIC and runs under DOS and WINDOWS operating system. In a test, it was63

proved SOWACH model could effectively identify the rooting architecture ideal for64

increased yield (Alahmad et al. 2019). This model in alfalfa proved that across salinity65

treatments, final root length density was 24% higher in high fibrous root type and66

accordingly herbage yield of these root type superseded the low fibrous type by 14%.67

The UNSATCHEM model was able to evaluate the efficacy of gypsum admin-68

istered at different depths and able to suggest the feasibility of alternative manage-69

ment practises. Green manuring involving calcite could reclaim sodic field with less70

512349_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:9/2/2022 Pages: 16 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5 Development of Ionome (Salt-Omic) for the Varietal … 3

water or without addition of gypsum was proved by software application (Amini71

et al. 2016). The abundant application of agri-engineering computer software for72

analysing saline soil was invented for saving time, expense and accuracy of the73

growers, farmers and stakeholders.74

The apparent abundance of soil engineering models could be surpassed if infor-75

mation on molecular crop databases could be utilized directly in salinity research.76

In reality, the employment of biological database in salinity research is meagre. The77

vast molecular resource available in public domain could be effectively used for78

Ionome construction and allied research. In this aspect the application and perfor-79

mance of OMIC data have enormous potential. The available OMIC database related80

to salinity could be exploited by plant breeders and molecular biologists. The key81

information for plant Ionome construction could be gathered from three main public82

repositories. GenBank, EMBL and DDBJ along with UniProt and Swissprot could83

provide initial data for salinity gene and protein sequence information. The major84

sequence repositories includes curated collections and provide holistic information85

on different domains (Lizumi and Sakai 2020). The individuality of these collections86

are maintained by their virtue of curation as well as unique approach of presentation87

of biological discoveries. A General plant database search could provide the detailed88

idea about available plant-omic information. Additionally, sequential exploration89

of the customized resources could assist in plant Ionome construction. The iden-90

tification of important salinity gene, protein, EST, biological pathways, conserved91

domains and other relevant information were discussed in this paper to emphasize92

the importance of crop Ionome construction. Ionome (Salt-OMIC) could assist in the93

speedy selection and propagation of salt tolerant and resistant crops for the rejuvena-94

tion of the coastal and inland saline belts of developing countries ultimately ensuring95

food security for the human population.96

5.2 Materials and Methods97

In the present study two approaches were taken for OMIC data collection. In the first98

approach all the available primary bioinformatics resource were explored for devel-99

opment of proposed Ionome relevant to crop improvement programme of saline belt100

of West Bengal, India. In this study mainly GenBank, DDBJ and EMBL, Uniprot and101

Swissprot repositories were searched for gathering OMIC information of the major102

crops grown in saline belt of West Bengal. Additionally several other customised103

public database for the above mentioned crops were investigated for gene and cDNA.104

In second approach the open source research database Google Scholar was used105

for article searching using a search string of salt + omic + crop name consensus106

tab with only one variable (crop name). It yielded articles with a sample size of107

9818. Only English articles published in last 5 years were included. The selected108

articles were screened on the basis of abstract and keywords. In initial selection grey109

literature, preprints, presentation, duplication and keynotes were excluded manually110

reducing the sample size to 303. In the next phase the study applied Voyant tool111
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4 B. Mondal

Table 5.1 Selection and
screening of salt-omic-based
research articles

Crop Extracted paper
(n)

Initial selection Selected full
paper

Rice 5010 254 14

Lentil 1240 57 9

Mung 1480 62 9

Sunflower 748 74 11

Mustard 514 102 9

Sesame 384 37 10

Jute 462 117 8

Total 9818 703 70

(Sampsel 2018), an open source, web-based application for executing text mining112

and analysis, promoting rapid analysis of scholarly articles and interpretation of113

texts from the selected articles. It precisely extracted the frequencies of keywords114

from all selected published articles and ultimately 70 articles covering only salt-omic115

information were thoroughly studied and data was extracted (Table 5.1).116

5.3 Results and Discussion117

5.3.1 Exploitation of Computational Data Source for Ionome118

Construction119

In the saline coastal belts of West Bengal apart from conventional rice cultivation120

moong, mustard, sunflower, sesame, betel leaf and jute were also cultivated. In this121

study, the unique dichotomous approach recorded major salt genes and proteins. A122

comparative study was made between the crop specific saline data source and omic123

associated papers. This study generated significant findings worthy to be applicable124

for Ionome construction for coastal saline agricultural crops of West Bengal as well125

as other salt affected regions of India. Omic information was extracted from reported126

genes and proteins to be used as candidate or reference gene in abiotic stress tolerance.127

In rice a Google Scholar a search using Salt + omic + rice shows 5010 papers with 22128

salt genes reported in gene repositories. Collectively, 1480 omic papers were found129

related to moong bean though there is no reporting of any gene. In NCBI platform a130

database search for moong bean yields only 1 database recovery under nucleotides 2131

reporting was found and that also comes under a test result performed for exclusive132

NCBI internal data testing. Thousand two hundred forty papers were found for lentil133

salt genes with 5 proteins. Whereas a search with salinity genes in soybean extracts134

information from 10 databases out of which 8 could yield good result in reference135

OMIC study of moong bean and legume breeding. In sunflower 1480 omic papers are136

available with only one salt gene. NCBI covers a total of 22 bioinformatics database137
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5 Development of Ionome (Salt-Omic) for the Varietal … 5

under which 10 were selected most suitable for the collection of Ionome information.138

These information could be used by plant breeders for novel molecular studies with139

allied species or varieties and in integration could act as a valid resource for saline140

agricultural research. Crop specific useful salinity details under each database was141

recorded for salt breeding experiments. The database information of 10 cultivated142

saline belt crops were given in Table 5.2.143

As rice is an important cereal the omic information were explored from several144

fields of publically accessible databases like OryzaExpress (Kudo et al. 2017), Oryz-145

abase (Kurata et al. 2006) and RiceXPro (Sato et al. 2013). The above domains were146

consulted for Ionome study. Salinity related 22 genes were found to be reported147

in NCBI database. The reported genes mainly came from japonica subspecies of148

rice and the available data could be utilized for advance screening of promising rice149

genotypes for a new region before the commencement of field trials. In RiceMetaSys150

web interface differential gene expression studies integrated molecular data for rice151

abiotic and biotic stresses (Sandhu et al. 2017). The breeders could use the Oryza-152

Express or Oryzabase for the construction of primers and contribute towards rice153

omic study as well. These database information could be utilized by the breeders of154

any omic discipline in the elucidation of molecular experimental result in rice. These155

database information could be utilized for pan-genomic and comparative candidate156

salt related genetic performance analysis of different salt tolerant indigenous and157

hybrid rice varieties.158

LIS or legume information system is a community resource utilized for legume159

improvement programme (Gonzales et al. 2005). The LIS contains legume mines160

integrating 8 individual mines covering bean mine, chickpea mine, cowpea mine,161

medic mine, lupin mine, soy mine, peanut mine and joint vetch mines combining162

genomic and expression data of the inter-mines. LIS has potential to be used for gene163

identification along with the primary data available in major public database. Pulsedb,164

a database mapping software (Humann et al. 2019) and KnowPulse a diversity based165

software (Sanderson et al. 2019) could be utilized for stress related classical and166

molecular genetic studies of pulse.167

BASC is an integrated bioinformatics system for Brassica research is available for168

omic study of salinity tolerant and resistant brassica (Timothy et al. 2007). BASC is169

generated for browsing and mining of Brassica genetic, genomic and phenotypic data.170

Multinational Brassica Genome Sequencing Project is a collection of five distinct171

modules, ESTDB, Microarray, MarkerQTL, CMap and EnsEMBL. ESTDB is a172

microarray module hosting expressed gene sequences and related annotation derived173

from comparison with GenBank, UniRef and the genome sequence of Arabidopsis.174

In mustard 130 salinity genes were evidenced with 720 proteins and 21EST from175

NCBI database. The Brassica database contains 47,555 unigenes made up of 17,939176

consensus and 29,616 singleton sequences requires separation of stress genes of177

Brassica. Additionally, raw and normalized both types of data could be extracted178

from BASC.179

In tomato different database extracts noteworthy information for genetic expres-180

sion studies of tomato. Newly developed curated, open source integrated data181

resource including TGRD-Tomato Genomic Resources Database (Suresh et al.182
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5 Development of Ionome (Salt-Omic) for the Varietal … 7

2014), TFGD-Tomato Functional Genomics Database (Tranchida-Lombardo et al.183

2018), KaTomicsDB-Kazuka Tomato Genomics Database (Shirasawa et al. 2013),184

MoToDB-Metabolome Database (Grenan 2009) and COXPathDB (Narise et al.185

2017) were of prime importance for tomato omic studies. Gramene (Tello-Ruiz et al.186

2021)and MaizeGDB (Lawrence et al. 2008) portal was found equally effective in187

comparative functional genomic studies. The portal initially provided information for188

grass species but later the expansion of the portal made space for dicot species also.189

This portal hosts omic information of 93 reference genome of different plant species190

and 3.9 million genes covering 122,947 families with orthologous and paralogous191

details (Carson et al. 2016).192

5.3.2 Salt Gene and Protein for Ionome Construction193

In this study integrative meta-analysis efficiently identified several promising salinity194

genes. Twenty-five productive salt genes were identified in this study that could act195

as reference gene in virtual molecular breeding design. Bioinformatics tools could196

aid the breeder in initial design of a new crop related study revealing paralogous or197

ortholog gene function. The information presented in Tables 5.3 and 5.4 could be198

utilized for an inclusive study of sequence information, marker assay, trait associa-199

tion, locus details and biochemical path analysis of salinity tolerant important crops200

of West Bengal. This kind of bioinformatics data was utilized in testing of salinity201

responsive candidate gene in tomato for varietal performance testing (J’afar et al.202

2018). In another paper two drought tolerant landraces were compared using 122203

candidate gene studies. The approach identified high effect SNPs, structural variants204

and promising heat shock proteins and Cation /H+ antiporters. Additionally, pan-205

genomic studies using 753 accessions in tomato showed 4873 genes were diverse206

from the reference genome (Chaudhary et al. 2019). In case of betel leaf the recorded207

information in NCBI repository requires huge input and there is provision for omic208

study.209

5.3.3 Signalling Pathways for Ionome Construction210

To combat salt stress the plant maintains an equilibrium among carbon sink distribu-211

tion, energy allocation and osmotic balance. Multiple signalling pathways become212

active for controlling salinity stress (Othman et al. 2017). Ionic stress signalling213

pathways along with osmotic stress signalling and detoxification pathways become214

operative in salt-stressed plants. A plethora of genes and proteins are related to215

this signalling cascades. SOS response, jasmonate pathway, tyrosine signalling,216

aquaporin regulation, ethylene synthesis, annexin mediated conductance, expres-217

sion of asparagine synthetase, hydroxyl proline-rich glycoproteins, ROS and ABA218

related proteins expressions were vital in salt stress management. Along with the219
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8 B. Mondal

Table 5.3 Essential genes identified for reference salt genomic studies

Gene Crop Gene ID Function References

SUV3 Oryza sativa Ssp.
Japonica

4,334,089 Delayed
senescence,
ATP-dependent
RNA helicase

Macovei et al. (2017)

KAT (4386) Sunflower, rice,
maize, potato

110,864,580 Cytosolic cation
homoeostasis

DeLeon et al. (2015)

HKT1 Japonica rice 4,341,971 Regulation of Na
toxicity under salt
stress

Oda et al. (2018)

NHX Barley 103,934,031 Na/H exchanger,
Vacuolar
transporter

Liangbo et al. (2018)

SOS family Rice 4,341,015 SOS response
peptidase

Rice Consortium
(2003), Platten et al.
(2013)

TIFY gene
family

Brassicaceae 4,342,421 Jasmonate ZIM
domain specific
protein

Reddy et al. (2017)

CRY1b Rice, Brassica 543,688
2,829,419

Cryptochrome 1b
Melatonin
biosynthesis

Hwang and Back
(2021)

CDPK Rice/Arabidopsis 819,282 Receptor kinase
Ca/CaM

Reddy et al. (2017)

MAPK Dicot/Monocot 541,618
(Maize)

Serine/threonine
protein kinase,
salt related
oxidative stress

Kong et al. (2019)

GH3 Rice, Gossypium,
Vitis

107,896,815
Gossypium

Lipid transporter
protein, Tyrosine
kinase signalling

Wong et al. (2019)

ERF4 OsSIRP1 Monocot, spinach,
Arabidopsis

101,290,597
Triticum

Jasmonate,
ethylene pathway

Zhang et al. (2020)

NAC Wheat, rice,
sorghum,
sugarcane, mung

818,902
Arabidopsis

AtHB13 and
JUB1
transcription
regulator

Ebrahimian-Motlagh
et al. (2018)

OBF1 (2021) Maize, rice,
Dendrobium

542,394
Maize

Zn finger ring
domain, ocs
element
transcription
factor

Alexandrov et al.
(2009)

(continued)

512349_1_En_5_Chapter � TYPESET DISK LE � CP Disp.:9/2/2022 Pages: 16 Layout: T1-Standard

A
ut

ho
r 

Pr
oo

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

5 Development of Ionome (Salt-Omic) for the Varietal … 9

Table 5.3 (continued)

Gene Crop Gene ID Function References

JcAP2/ERFs
2381

Rice, physic nut,
Arabidopsis

844,348 Leucine rich
repeat family,
stomatal
development

Tang et al. (2016)

OsFd1/Saltol Red rice 3,974,662 Ferrodoxin 1
ETS, Na/K
homoeostasis

He et al. 2020

RSS3 Oryza sativa Ssp.
Japonica

4,350,435 Jasmonate
induced gene
expression

To et al. (2019), Toda
et al. (2013)

OsGTv2 Oryza sativa Ssp.
Japonica

4,330,612 Mitochondrial
aldehyde
dehydrogenase,
Salinity
adaptation

Xie et al. (2020)

AFP1,ninja
family protein

Sunflower,
tomato, rapeseed

110,920,831 putative ethylene
responsive
binding
factor-associated
repression, Ninja
family

Badouin et al. (2017)

TaHAG1 Bread wheat.
Barley,
Arabidopsis

119,339,917 Modulating ROS
production and
salinity regulation

Zheng et al. (2021)

OsLEA Oryza sativa Ssp.
Japonica

4,339,745 ABA induced
antioxidant
stresses

Rice Consortium
(2003)

OsPYL/RCAR7 Oryza sativa Ssp.
Japonica

2,829,419 Glutaredoxin,
ABA receptor

Bhatnagar et al.
(2020)

TaOFP family Triticum 3,760,030 Tillering, water
stress

Wang et al. (2020)

ZmPTPN Maize,
Arabidopsis

AT5G50670 ABA signalling
AsA biosynthesis

Zhang et al. (2020)

AQP (cDNA) Chickpea,
lathyrus, lentil

DY475124 Aquaporin
regulation

Mantri et al. (2007)

ASNS (cDNA) Chickpea, gram,
lentil, grass pea

DY475477 Asparagine
synthetase
(glutamine
hydrolysing)

Mantri et al. (2007)
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10 B. Mondal

Table 5.4 Essential proteins identified for reference proteomic studies from Uniprot repository

Protein Accession Length
(AA)

Pathway Crop References

WRKY
transcription factor
WRKY71

Q6QHD1 348 Gibberellin
signalling
pathway

Rice Zhang et al.
(2020)

Jasmonate ZIM
domain-containing
protein 9

Q8GSI0 179 Jasmonic acid
signalling
pathway

Rice Young et al.
(2018)

SNF1-related
protein kinase
catalytic subunit
alpha

Q38997 521 Serine/threonine
protein kinase

Arabidopsis Simon et al.
(2018)

Bidirectional sugar
transporter
SWEET15

Q9FY94 292 Transmembrane
transporter

Maize Doidy et al.
(2019)

Ascorbate oxidase M4DUF2 570 Oxidoreductase,
defense pathway

Rapeseed Nudrat et al.
(2017)

Mitogen activated
protein kinase

ACJ31803 586 ABA signal
transduction

Groundnut Wang et al.
(2016)

XERICO KAG1363776 166 E3
ubiquitin-protein
ligase

Coconut Brugiere
et al. (2017)

5MYB ABI74688 348 Transcriptase Cabbage Wang et al.
(2015)

JUNGBRUNNEN Q 9SK55 375 TF, Central
longevity
regulator

Thalecress Dudhate
et al. (2021)

ABRC5 AAR06258 141 Ethylene
responsive
binding factor

Sunflower Najafi et al.
(2018)

RCAR3 5GWO_D 175 ABA receptor Rice Hyunmi
et al. (2012)

DELLA NP_001240948 523 Ethylene
regulator

Tomato Shohat et al.
(2020)

SnRK2 AID23890 354 sucrose
non-fermenting
1-related protein
kinase 2

Cotton Liu et al.
(2017)

ANAC017 EFH67341 547 Transcription
regulator

Thale cress Meng et al.
(2019)

AKT AT3G49850 693 AKT kinase
telomeric DNA
binding protein

Xu et al.
(2020)
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salt genes several important salt proteins were found impressive for comparative220

proteomic studies. In proteomics 2D gel electrophoresis, MALDI-TOF, mass spec-221

troscopy (Moco et al. 2006) and western blot have proved effective in analysing stress222

response (Shinozaki et al. 2018). Differential response of 49 proteins was noticed223

under aluminium stress in tomato seedlings and 40 for silicon stress in tomato (Zhou224

et al. 2009; Muneer et al. 2015).225

5.4 Conclusions226

The web-based primary bioinformatics database provides abundant omic informa-227

tion for several crops assisting scientists and researchers in the construction of228

crop specific public or private databases. Salinity stress is regarded as one of the229

robust abiotic problems reducing global food productivity. The proper alleviationAQ1 230

of salt stress requires an understanding of the activity or expression of mineral and231

trace elements forming an integrated database including agri-engineering-based plant232

modelling and multivariate omic information to provide a solution to farmers. The233

omic study could provide true insight into the physiological activity of plant organs,234

differential expression of genes and epigenetic regulations. The above study proposes235

the necessity of the formation of a breeder-focused standalone Ionome (Salt-OMIC)236

database or crop specific customised construction for ensuring global food security237

under ever changing environmental complications.238
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